

Rev C1, Page 1/73

FEATURES

- Dual-channel position sensing with on-chip redundancy
- Optical transmissive EncoderBlue[®] sensor frontend
- Chip types for \varnothing 26.5 mm or \varnothing 42.5 mm code discs
- Safety-certified as Compliant Item up to SIL 3 / PL e
- BiSS Safety compatible interface
- ♦ Control Channel (CC) features:
 - Up to 15 bits ST position data resolution
 - ♦ Differential sin/cos outputs with 1024 or 2048 CPR
 - ♦ BiSS C interface
 - ♦ MT interface, e.g. for iC-MV or iC-LV
 - Pin-selected operating modes
 - ♦ Comprehensive diagnostics (e.g. sin/cos DC monitor)
- Safety Channel (SC) features:
 - Up to 15 bits ST position data resolution
 - ♦ BiSS C or SPI interface
 - ♦ MT interface, e.g. for iC-MV or iC-LV
 - ♦ Configuration initialized from external EEPROM via I²C
 - Comprehensive diagnostics (e.g. sin/cos AC monitor)
 - Integrated temperature sensor

APPLICATIONS

Functional safety encoders

 High-resolution optical encoders (up to 24 bits using iC-MR3)

Rev C1, Page 2/73

DESCRIPTION

iC-RZ is an advanced optical sensor IC for transmissive encoders, with integrated photodiodes for reliable and redundant scanning of a code disc with 3 different tracks:

- 1. Incremental track (1024 CPR sine/cosine)
- 2. Pseudo-random Code track (10-bit PRC)
- 3. Auxiliary track (AT) (sine/cosine CPR is determined by the device version)

To do this, the iC-RZ is divided into two autonomous channels called Control Channel (CC) and Safety Channel (SC).

The Control Channel generates a 15-bit absolute position value by scanning the absolute 10-bit PRC track and the incremental track (1024 CPR sine/cosine). In doing so, the scanning of the PRC is synchronized with the 1024 CPR sine/cosine signals, which are further resolved by a 5-bit real-time interpolator.

The Safety Channel operates in exactly the same way, meaning that position data generation is fully redundant: the Control Channel generates the Control Position Word (CPW), and the Safety Channel the Safety Position Word (SPW).

The absolute position value of the CPW is output via a serial BiSS Interface using a 6-bit CRC. This data matches in phase with the sine/cosine signals generated from the auxiliary track, which are output as voltage signals over low-impedance buffers. It is therefore possible to increase the resolution of the CPW by connecting an external interpolator, preferably iC-MR3, featuring signal-conditioning to increase the position accuracy.

The absolute position value of the SPW is output via a serial BiSS/SPI Interface using a 16-bit CRC and 6-bit sign-of-life counter (LC). A standard SSI output is also possible, but without nE, nW, CRC and LC.

Each channel uses its absolute 10-bit PRC track photodiodes to capture and count revolutions (embedded 24-bit revolution counter). These revolution counters can be supplied from an independent external energy source (e.g. a battery).

An optional multiturn value (12 bit or 16 bit) can be read by the Control Channel and the Safety Channel through the MT interface of each channel, using the SSI protocol. This multiturn data is synchronized to the internally generated singleturn absolute value.

All integrated photodiodes used for the incremental scanning of sine/cosine signals are arranged as an *HD Phased Array*, providing excellent signal fidelity at relaxed alignment tolerances.

For safety-related applications the appropriate Safety Implementation Manual has to be considered.

General notice on materials under excessive conditions Epoxy resins (such as solder resists, IC package and injection molding materials, as well as adhesives) may show discoloration, yellowing, and general surface changes when exposed long-term to high temperatures, humidity, irradiation, or due to thermal treatments for soldering and other manufacturing processes.

Equally, standard molding materials used for IC packages can show visible changes induced by irradiation, among others when exposed to light of shorter wavelengths, for instance, blue light. Such surface effects caused by visible or IR LED light are rated to be of cosmetic nature, without influence on the chip's function, its specifications or reliability.

Note that any other materials used in the system (e.g. varnish, glue, code disc) should also be verified for irradiation effects.

General notice on application-specific programming

Parameters defined in the datasheet represent supplier's attentive tests and validations, but - by principle - do not imply any warranty or guarantee as to their accuracy, completeness or correctness under all application conditions. In particular, setup conditions, register settings and power-up have to be thoroughly validated by the user within his specific application environment and requirements (system responsibility).

The chip's performance in application is impacted by system conditions like the quality of the optical target, the illumination, temperature and mechanical stress, sensor alignment and initial calibration.

Rev C1, Page 3/73

CONTENTS

PACKAGING INFORMATION	5
	Б
	5
oQFN38-7x5	6
LAYOUT DETAILS: iC-RZ26xx	7
DETECTOR SECTIONS: iC-RZ26xx	7
PACKAGE DIMENSIONS :iC-RZ42xx oQFN38-7x5	8
LAYOUT DETAILS: iC-RZ42xx	9
DETECTOR SECTIONS: iC-RZ42xx	9
ABSOLUTE MAXIMUM RATINGS	10
THERMAL DATA	10
ELECTRICAL CHARACTERISTICS	11
OPERATING REQUIREMENTS	16
BiSS, SSI Interface	16
SPI Interface	18
	19
I ² C Interface	19
SYSTEM OVERVIEW	20
Overview	20
Control Channel (CC)	21
Safety Channel (SC)	21
I/O PIN OVERVIEW	21
Control Channel	21
Safety Channel	21
CONFIGURATION PARAMETERS	22
REGISTER MAP (CC)	23
REGISTER MAP (SC)	25
PHOTODIODES	27
Overview	27
Auxiliary track photodiodes with differential analog outputs (CC)	27
Incremental track photodiodes for the internal	
5-bit interpolator	27
PRC track photodiodes	28
LED CONTROL (CC)	28

STARTUP PROCESS Configuration of Control Channel Configuration of Safety Channel Position data initialization	29 29 31 32
I2C INTERFACE (SC) General	33 33 33
SERIAL I/O INTERFACES Control Channel	35 35 35
BISS INTERFACE Overview BISS protocol commands Control Channel Safety Channel	36 36 36 36 37
SPI INTERFACE (SC) SPI Protocol Opcode ACTIVATE Opcode Read REGISTER (single) Opcode REGISTER status/data Opcode Write REGISTER (single) Opcode Read REGISTER (cont.) Opcode Read STATUS Opcode SDAD-transmission Opcode SDAD status	 39 39 40 40 41 41 42 42 43
REGISTER ACCESS Control Channel: BiSS Control Channel: Register protection Safety Channel: SPI and BiSS Safety Channel: Register protection	45 45 45 46 47
SYNCHRONIZATION LOGIC Position Data Generation	48 48 48
MULTITURN FUNCTIONS MT Interface (SSI)	50 50 51 53

DIAGNOSTICS SC	62
Amplifier Limit Monitor	62
Sin/Cos AC Monitor	62
Interpolator Plausibility Check	62
PRC Plausibility Check	62
Multiturn Interface Protocol	62
Multiturn Plausibility Check	62
24-bit Revolution Counter	62
Temperature Monitor	62
Configuration	63
Internal Test Modes	63
Status Registers	63
BiSS, EXTSSI, SPI: Error and Warning bits	
nE/nW	64
Pin NRES2	65
COMMANDS	66
Control Channel	66
Safety Channel	67
ALIGNMENT	68
Control Channel	68
Safety Channel	69
DESIGN REVIEW: Notes On Chip Functions	70
REVISION HISTORY	71

Rev C1, Page 4/73

Rev C1, Page 5/73

PACKAGING INFORMATION

PIN CONFIGURATION oQFN38-7x5

PIN FUNCTIONS

No. Name Function

- 1 NCOS Cosine Output, negative (CC³)
- 2 PCOS Cosine Output, positive (CC)
- 3 VREF Reference Voltage Output (CC)
- 4 **PSIN** Sine Output, positive (CC)
- 5 **NSIN** Sine Output, negative (CC)
- 6 TP1 Test Input 1 (CC)
- 7 ADIOK1 Status Output ⁶ (CC)
- 8 MO1 MT Interface. clock output (CC)
- 9 MI1 MT Interface, data input (CC)
- 10 CFG11 Configuration Input 1 (CC)

No. Name Function

PIN FUNCTIONS

11	CFG10	Configuration Input 0 (CC)
12	MA1	BiSS Interface, clock input (CC)
13	SLO1	BiSS Interface, data output (CC)
14	SCL2	I ² C Interface, clock line (SC ⁴)
15	SDA2	I ² C Interface, data line (SC)
16	SDO2	BiSS/SPI Interface, data output (SC)
17	SCI2	BiSS/SPI Interface, clock input (SC)
18	SDI2	BiSS/SPI Interface, data input (SC)
19	n.c. ¹	
20	NCS2	SPI Interface, chip select input ² (SC)
21	NL2	SPI Interface, latch input ² (SC)
22	MI2	MT Interface, data input (SC)
23	MO2	MT Interface, clock output (SC)
24	NRES2	REBOOT input/indication output (SC)
25	TP2	Test Input 2 (SC)
26	VIO2	+2.5 V+5 V I/O Supply Voltage ⁷ (SC)
27	VDDM2	+3 V+5 V MT Supply Voltage ⁸ (SC)
28	VDDA2	+5 V Analog (Supply Voltage ⁷ SC)
29	VDD2	+5 V Digital Supply Voltage ⁷ (SC)
30	GND2	Ground (SC)
31	LED2	LED Flashing Output ⁵ (MT) (SC)
32	LED1	LED Flashing Output ⁵ (MT) (CC)
33	GND1	Ground (CC)
34	VDD1	+5 V Digital Supply Voltage ⁷ (CC)
35	VDDA1	+5 V Analog Supply Voltage ⁷ (CC)
36	LEDC	LED Control Output ⁵ (CC)
37	VDDM1	+3 V+5 V MT Supply Voltage ⁸ (CC)
38	VIO1	+2.5 V+5 V I/O Supply Voltage ⁷ (CC)

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes);

¹ Pin numbers marked n.c. are not connected.

² Pin is low active.

³ CC: Control Channel Grounding all channel pins should be considered if not in use.

⁴ SC: Safety Channel Grounding all channel pins should be considered if not in use.

⁵ High-side current source output. If the battery-buffered MT function is not in use, connect LED1 to GND1, respectively LED2 to GND2.

⁶ Open-drain output

Supply voltage input must be blocked with a capacitor of at least 100 nF close to the chip's supply terminals.

⁸ Supply voltage input must be blocked with a capacitor of at least 1 µF close to the chip's supply terminals. If the battery-buffered MT function is not in use, connect VDDM1 to VDDA1, respectively VDDM2 to VDDA2. Refer to footnote 5 for LED1, and LED2.

To better EMI immunity, unused pins should be wired externally according to the built-in pull-up/pull-down.

TP1/2 must be connected to GND1/2. GND1 and GND2 must be connected to each other.

The thermal pad of the oQFN package (bottom side) must be connected by a single link to GND1 or GND2. A current flow across the paddle is not permissible.

Rev C1, Page 6/73

PACKAGE DIMENSIONS : iC-RZ26xx oQFN38-7x5

All dimensions given in mm. General tolerances of form and position according to JEDEC MO-220. Positional tolerance of sensor pattern: $\pm 70\mu$ m / $\pm 0.6^{\circ}$ (with respect to center of backside pad). Maximum molding excess $\pm 10\mu$ m / -75μ m versus surface of glass. Small pits in the mold surface, which may occasionally appear due to the manufacturing process, are cosmetic in nature and do not affect reliability. $drb_oqfn38-7x5-4_rz26xx_pack_1, 8.1, Sheet1$

Rev C1, Page 7/73

LAYOUT DETAILS: iC-RZ26xx

¹ Inspection class for the optical inspection of detector areas. Refer to Optical Selection Criteria for further description.

Rev C1, Page 8/73

PACKAGE DIMENSIONS : iC-RZ42xx oQFN38-7x5

All dimensions given in mm. General tolerances of form and position according to JEDEC MO-220. Positional tolerance of sensor pattern: $\pm 70\mu$ m / $\pm 0.6^{\circ}$ (with respect to center of backside pad). Maximum molding excess $\pm 10\mu$ m / -75μ m versus surface of glass. Small pits in the mold surface, which may occasionally appear due to the manufacturing process, are cosmetic in nature and do not affect reliability. $drb_oqfn38-7x5-4_rz42xx_y_pack_1, 81, Sheet1$

Rev C1, Page 9/73

LAYOUT DETAILS: iC-RZ42xx

Rev C1, Page 10/73

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	V(VDD)	Voltage at VDD1, VDD2, VDDA1, VDDA2	GND1, GND2 connected	-0.3	6	V
G002	V(VIO)	Voltage at VIO1, VIO2	GND1, GND2 connected	-0.3	6	V
G003	V(VDDM)	Voltage at VDDM1, VDDM2	GND1, GND2 connected	-0.3	6	V
G004	l(VDDx)	Current in VDD1, VDD2, VDDA1, VDDA2	GND1, GND2 connected	-20	50	mA
G005	I(VIOx)	Current in VIO1, VIO2	GND1, GND2 connected	-20	50	mA
G006	V()a	Pin Voltage, all signal analog outputs	GND1, GND2 connected	-0.3	VDDA + 0.3	V
G007	V()io	Pin Voltage, all signal digital output	GND1, GND2 connected	-0.3	VIO + 0.3	V
G008	l()	Pin Current, all signal outputs	GND1, GND2 connected	-10	10	mA
G009	Vd()	ESD Susceptibility at all Pins	HBM, 100 pF discharged through $1.5 k\Omega$		2	kV
G010	Tj	Junction Temperature		-40	150	°C

THERMAL DATA

Operating Conditions (x = 1,2): VDDx = VDDAx = 4.5...5.5 V, GNDx = 0V, VDDMx = 2.9V...VDDAx, VIOx = 2.375V...VDDx

Item	Symbol	Parameter	Conditions				Unit
No.	-			Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	oQFN38 7x5	-40		125	°C
T02	Ts	Permissible Storage Temperature Range	oQFN38 7x5	-40		125	°C
T03	Rthja	Thermal Resistance Chip to Ambient	oQFN38 7x5 soldered to PCB according to JEDEC 51		35		K/W

Rev C1, Page 11/73

ELECTRICAL CHARACTERISTICS

Operating Conditions (x = 1, 2): VDDx = VDDAx = VDDMx = 4.5... 5.5 V, GNDx = 0 V, VIOx = 2.375 V... VDDx, T_j = -40... 135 °C, unless otherwise noted.

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device (x = 1	1, 2)	1	1		1	11
001	VDDx	Permissible Supply Voltage		4.5		5.5	V
002	VDDAx	Permissible Supply Voltage		4.5		5.5	V
003	VIOx	Permissible Supply Voltage	$VIOx \le VDDx$ VIOx must be up before tdr1() ends	2.375		5.5	V
004	VDDMx	Permissible Supply Voltage	if VDDx > VDDxon: VDDMx \leq VDDx, VDDMx \leq VDDAx	2.9		5.5	V
005	I(VDD1)	Supply Current VDD1	no load		2.5	5	mA
006	I(VDD2)	Supply Current VDD2	no load		4.0	8	mA
007	I(VDDA1)	Supply Current VDDA1	photocurrent amplifiers within op. range, no load		12.0	20	mA
008	I(VDDA2)	Supply Current VDDA2	photocurrent amplifiers within op. range, no load		6.0	10	mA
009	I(VIO1)	Supply Current VIO1	V(VIO1) = 5V, no load V(VIO1) = 3.3V, no load		0.5 0.3		mA mA
010	I(VIO2)	Supply Current VIO2	V(VIO2) = 5V, no load V(VIO2) = 3.3V, no load		1.2 0.7		mA mA
011	λ ar	Spectral Application Range		400		500	nm
012	$S(\lambda r)$	Spectral Sensitivity	λ_{LED} = 460 nm		0.11		A/W
013	E()typ	Typical Irradiance	λ_{LED} = 460 nm , Vout() < Vout()mx		12		mW/cm ²
Auxili	ary Track Pl	notodiodes and Amplifiers: PSIN	I, NSIN, PCOS, NCOS, VREF				
101	Aph()	Radiant Sensitive Area	DPSIN, DNSIN, DPCOS, DNCOS (sum of segments per signal) RZ2648 RZ4248 RZ2624 RZ4224		0.058 0.064 0.042 0.053		mm ² mm ² mm ² mm ²
102	Z()	Equivalent Transimpedance Gain	Z = Vout() / lph(), Tj = 27 °C; RZ26xx RZ42xx		0.971 0.780		ΜΩ ΜΩ
103	TCz	Temperature Coefficient of Z()			-0.25		%/°C
104	fc()hi	Cut-off Frequency (-3 dB)	Signals PSIN, NSIN, PCOS, NCOS	250	550		kHz
105	ton()	Power-On Settling Time	$VDD1 = 0 V \rightarrow 5 V$			100	μs
106	Vout()mx	Maximum Output Voltage at PSIN, NSIN, PCOS, NCOS	increasing illumination, EAMPA = 0 VDD1 = 4.5 V VDD1 = 5.5 V	2.2 3.0			
107	Vout()dc	Output Offset Voltage at PSIN, NSIN, PCOS, NCOS	amplitude controlled to 250 mV by LED control; signal contrast of 70 % (see 13 for details)		1.26		V
108	Vout()d	Dark Signal Level at VREF and PSIN, NSIN, PCOS, NCOS	no illumination	0.60	0.90	1.15	V
109	ΔZ()pn	Transimpedance Gain Matching	any output vs. any output	-0.2		0.2	%
110	⊿Vout()pn	Signal Matching	any output vs. any output (without VREF) any output vs. VREF no illumination	-5 -6		5 6	mV mV
111	VNoise()	RMS Output Noise	illuminated to 500 mV signal level above dark level, 500 kHz bandwidth			1	mV
112	lph()	Permissible Photocurrent Operating Range		0		1120	nA
113	lsc()hi	Short-Circuit Current hi from pins	load current to ground	-1000	-650	-200	μA
114	lsc(VREF)h	Short-Circuit Current hi from pin	load current to ground	-1500	-1000	-500	μA
115	lsc()lo	Short-Circuit Current lo in pins	load current to IC	200	650	1000	μA
116	Isc(VREF)lc	Short-Circuit Current lo in pin VREF	load current to IC	2000	4500	6000	μA
117	TCf	Temperature Coefficent VREF			-1.2		mV/°C

Rev C1, Page 12/73

ELECTRICAL CHARACTERISTICS

Opera VDDx	ting Conditio = VDDAx = \	ons (x = 1, 2): /DDMx = 4.5 5.5 V, GNDx = 0 V,	VIOx = 2.375 V VDDx, T _i = -40 135 °C, unle	ess other	wise note	ed.	
ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
118	V(VREF)	Output Voltage	Tj = 27°C		890		mV
Power	r Down Res	et: VDDx (x = 1, 2)	1		1		
401	VDDxon	Turn-on Threshold VDDx	increasing voltage at VDDx	3.8	4.2	4.45	V
402	VDDxoff	Turn-off Threshold VDDx (undervoltage reset)	decreasing voltage at VDDx	3.6	4.0	4.3	V
403	VDDxhys	Threshold Hysteresis VDDx	VDDxhys = VDDxon - VDDxoff	100			mV
Incren	nental Tracl	(1024 CPR): Photodiodes and A	mplifiers				
701	Aph()	Radiant Sensitive Area	sum of segments		0.033		mm ²
702	Z()	Equivalent Transimpedance Gain	Z = Vout() / Iph(), Tj = 27 °C		1.3		MΩ
703	TCz	Temperature Coefficient of Z()			-0.25		%/°C
704	fc()hi	Cut-off Frequency (-3 dB)		200	450		kHz
705	Vout()mx	Maximum Output Voltage	increasing illumination, EAMP24 = 0 VDDx = 4.5 V VDDx = 5.5 V	2.2 3.0			V V
706	Vout()d	Dark Signal Level	no illumination	0.6	0.9	1.15	V
5-bit r	eal-time Inte	erpolator					
801	RESsdc	Resolution Interpolator	reference one period of the 1024 track		5		bit
802	AAabs	Absolute Angular Accuracy	ideal input signals with an amplitude of 250 mV, quasi-static	-5.6		5.6	DEG
803	AArel	Relative Angle Accuracy	ideal input signals with an amplitude of 250 mV, quasi-static	-4.2		4.2	DEG
804	AAR	Repeatability Angle Accuracy	ideal input signals with an amplitude of 250 mV		± 0.5		DEG
805	Ahys	Angular Hysteresis	ideal input signals with an amplitude of 250 mV, quasi-static	± 0.5	± 2.8	± 5.6	DEG
806	Vamp()	Permissible Amplitude ¹	referring to single-ended 1024 track sin/cos signals, TEST_CC/SC = 0x03	175		500	mV
Sin/Co	os AC Moni	tor (SC)					
A01	Vac()min	AC Level Monitoring, lower threshold	referring to single-ended sin/cos signals (all amplitudes equal), illumination decreasing AMNR = 0 AMNR = 1	40 70	75 125	110 160	mV mV
A02	Vac()max	AC Level Monitoring, upper threshold	referring to single-ended sin/cos signals (all amplitudes equal), illumination increasing AMNR = 0 AMNR = 1	470 430	585 525	680 600	mV mV
A03	Vac()hys	AC Level Monitoring, Hysteresis	referred to Vac()min, Vac()max	2	10	20	mV
Pin-Co	onfiguratior	n Inputs CFG11, CFG10					
C01	Vt()lo	Tri-Level Threshold Voltage low		15			%VIO
C02	Vt()hi	Tri-Level Threshold Voltage high				85	%VIO
C03	Vt()mid	Tri-Level Threshold Voltage mid		35		65	%VIO
C04	V0()	Pin-Open Voltage		45	50	55	%VIO
C05	Rpd()	Internal Pull-Down Resistor	V() = VIOx	50		175	kΩ
C06	Rpu()	Internal Pull-Up Resistor	V()= GNDx	50		175	kΩ
Oscill	ators						
E01	fsys()	System Clock		6	10	16	MHz
E02	fmc()	Internal Position Clock	normal operation battery operation: VDDAx = VDDx = 0 V, VDDMx = 2.9 3.6 V, error-free position detec- tion, STEP = 0; see also Tables 64 and 65	1.2 0.018	2	4.1	MHz MHz
E03	TCfmc	Temperature Coefficient of fmc()		0.20		0.37	%/°C
E04	fmo()	SSI Clock Frequency at MOx			fsys/66		

¹ For iC-RZ Y and iC-RZ Y1: Please refer to the design review on p. 70.

Rev C1, Page 13/73

ELECTRICAL CHARACTERISTICS

Operating Conditions (x = 1, 2): VDDx = VDDAx = VDDMx = 4.5...5.5 V, GNDx = 0 V, VIOx = 2.375 V... VDDx, T_j = -40...135 °C, unless otherwise noted.

ltem	Symbol	Parameter	Conditions		1		Unit
No.				Min.	Тур.	Max.	
E05	fi2c()	I2C Clock Frequency at SCL2			fsys/128		
E06	tdr1()	Wait Time after Power-on or Command REBOOT	see Figure 14		870	1500	μs
E07	tdr2()	Wait Time after Command RE- SET	see Figure 14		78	130	μs
E08	tcfg(SC)	SC: Configuration Time	without EEPROM		10	18	ms
			EEPROM access without I ² C read error		4	7	ms
			l^2C bus busy (e.g. SDA=0)		2	3.5	ms
E09	tstg()	Generation Time ST Position during Start Up	no illumination error	1.4			μs
E10	tmtg()	Generation Time MT Position during Start Up	external MT without error external MT with error			2.6 170	ms ms
Sin/Co	s DC Monit	or (CC)	1	Ш			1
F01	Vdc()min	DC Level Monitoring, lower	Vdc() referred to VREF, EDC24 = 0				
	, v	threshold	RZ26xx	90	160	230	mV
			RZ42xx	70	140	200	mV
F02	Vdc()hys	DC Level Monitor Hysteresis		10	25	50	mV
Tempe	erature Sens	sor (SC)	1				
H01	TEMP	Digital Temperature	8-bit value; Tj = -40 °C		0x18		
		Representation	$I_{J} = 20 ^{\circ}C$ $T_{i} = 100 ^{\circ}C$		0x54 0xA4		
H02	ΔΤ	Measurement Resolution			1		°C/I SB
H03	<u>д</u> , Т.,	Measurement Offset Error	$T_{i} = -40$ 130 °C OTEMP = 0x00	-15		15	°C
H04	INI		Ti=25 °C and Offset Error corrected	-10		3	
H05				-0		1	LOD
		Pofrosh Pato		-1	1024/fevr	, I	
Digita	II Inputo /MT	Reliesti Rale			1024/1598	>	
		Threshold Voltage bi		, NRE32	66	70	@/\/IO
				20	22	70	76VIO
102	Vt()IO			30	33		%00
103	Vt()nys	Hysteresis	vt()nys = vt()ni - vt()io	200	00	400	mv
104	Ipd()	Pull-Down Current at MI1, MI2	V()=1VVIOx	10	20	100	μΑ
105	lpu()	Pull-Up Current at MA1, NRES2, SCI2, SDI2, NCS2, NL2, SCL2, SDA2	V()=0 VIOx-1V	-100	-20	-10	μΑ
106	tpw1()	Minimal Required Pulse Width at NRES2		3			μs
107	tpw2()	Maximum Required Pulse Width at NRES2				10	μs
LED C	ontrol (CC)	: LEDC					
L01	Vs()hi	Saturation Voltage hi	Vs()hi = VDD1 - V(LEDC); I() = -20 mA		0.3	0.6	V
L02	lsc()hi	Short-Circuit Current hi	V()=0V				
			ENIK(1:0) = 00	-100	-50	-25	mA
			ENIK(1:0) = 01 ENIK(1:0) = 10	-0.1	-4	-2	mA mA
			ENIK(1:0) = 11	-18	-8	-4	mA
L03	lop()	Permissible LED Output Current Control Range	ENIK(1:0) = 00	-25		-0.05	mA
L04	Vpk()	Regulated Mean Target	Vpk() = V(PSIN) - V(NSIN),		500		mV
		Amplitude with Square Control	$\dot{Vpk}() = V(PCOS) - \dot{V}(NCOS)$ respectively; ENIK(1:0) = 00, VSET(1:0) = 11				
L05	ton	Power-On Settling Time	ENIK(1:0) = 00			800	μs
L06	Va()min	Low Amplitude Monitoring	according to L04; refers to sin ² +cos ² vector		50		%
		Threshold	amplitude, threshold to trigger status ELEDC				

Rev C1, Page 14/73

ELECTRICAL CHARACTERISTICS

Operating Conditions (x = 1, 2):

VDDx = VDDAx = VDDMx = 4.5	. 5.5 V, GNDx = 0 V, VIOx = 2.375 V	VDDx, T _i = -40 135 °C	unless otherwise noted.

Item	Symbol	Parameter	Conditions		.	Maria	Unit
NO. Digital	Outpute (M	T BISS/SPL 12C Interfaces): MO	1 SLO1 CEG11 MO2 SDO2 SCL2 SDA2 AD		Iyp.	wax.	
		Seturation Voltage bi	1, SLO1, CFG11, MO2, SDO2, SCL2, SDA2, AD		KE32	400	m)/
001	vs()ni	Saturation voltage ni	Vs()nl = VIOx - V() MO1, SLO1, MO2, SDO2, CFG11 (only if TEST_CC = 0x07) VIOx = $2.3753.0$ V, I() = -1.0 mA VIOx = $3.05.5$ V, I() = -1.5 mA SCL2, SDA2 (only if TEST_SC = 0x07) VIOx = $2.3753.0$ V, I() = -2.5 mA VIOx = $3.05.5$ V, I() = -3.5 mA			400	mv
O02	lsc()hi	Short-Circuit Current hi	MO1, SLO1, MO2, SDO2, CFG11 (only if TEST_CC=0x07) SCL2, SDA2 (only if TEST_SC=0x07)	-100 -100		-1.6 -4	mA mA
O03	Vs()lo	Saturation Voltage lo	MO1, SLO1, MO2, SDO2, ADIOK1, NRES2, CFG11 (only if TEST_CC = 0x07) VIOx = 2.375 3.0 V, I() = 1.0 mA VIOx = 3.0 5.5 V, I() = 1.5 mA SCL2, SDA2 VIOx = 2.375 3.0 V, I() = 2.5 mA VIOx = 3.0 5.5 V, I() = 4.0 mA			400	mV
O04	lsc()lo	Short-Circuit Current lo	MO1, SLO1, MO2, SDO2, ADIOK1, NRES2, CFG11 (only if TEST_CC = 0x07) SCI 2 SDA2	1.6 4		100 100	mA
005	tout()	BiSS Adaptive Slave Timeout at	refer to timing Figure 1	7 2/fsvs	t	210/	
	out()	SLOx	t_{init} measured as first 1.5 · T(MAx) each frame	271393	4 / fsys	fsys	
006	lpu()	Pull-Up Current at ADIOK1	V()=0VDDA1-1V	-20	-10	-5	μA
007	t _{P3} ()	Propagation Delay: SLO stable after MA lo \rightarrow hi	refer to timing Figure 1 BiSS (CC and SC) and SSI Mode (SC)			50	ns
10-bit	PRC Track:	Photodiodes and Amplifiers					
R01	Aph()	Radiant Sensitive Area	Random track (single photodiode) RZ26xx RZ42xx		0.0085 0.0167		mm² mm²
R02	Z()	Equivalent Transimpedance Gain			2.6		MΩ
R03	Vt(hys)	Threshold Hysteresis Referred to (I(DRPi)+I(DRNi))/2	I(DRPi, DRNi) = 5 75 nA		6	20	%
Suppl	y Switch and	d Battery Monitoring (VDDMx and	d LEDx with x = 1, 2)				
V01	V()max	Permissible LED Operating Volt- age at LEDx	While flashing the LED			VDDMx - 200	mV
V02	Vt()hi	Threshold Voltage hi at VDDAx for Supply of the Battery-buffered Multiturn Counter	VDDAx rising, Vt()hi = VDDAx - VDDMx VDDx < VDDxon (VDDx rising) VDDMx = 2.9 3.6 V	60		500	mV
V03	Vt()lo	Threshold Voltage Io at VDDAx for Supply of the Battery-buffered Multiturn Counter	VDDAx falling, Vt()lo = VDDAx - VDDMx VDDx < VDDxoff (VDDx falling) VDDMx = 2.9 3.6 V	0		400	mV
V04	Vt()hys	Threshold Hysteresis	Vt()hys = Vt()hi - Vt()lo	30		300	mV
V05	VDDSon	Turn-on Threshold (power-on release) for Switched Supply Voltage (VDDMx or VDDx)	VDDAx < VDDMx increasing voltage at VDDMx	1.1	2.25	2.9	V
V06	V()led	Permissible Voltage at LEDx	$VDDAx \ge VDDMx$, I(LEDx) < 10 μ A	0		5.5	V
V07	lpk()	Pulse Current at LEDx for Flash- ing	VDDMx = 2.9 3.6 V, V(LEDx) = 1.4 V V(LEDx)max	2		10	mA
V08	tw()	Pulse Width at LEDx for Flashing	VDDMx = 2.9 3.6 V, V(LEDx) = 1.4 V V(LEDx)max	1.2	2.5	4.2	μs

Rev C1, Page 15/73

ELECTRICAL CHARACTERISTICS

Operating Conditions (x = 1, 2): VDDx = VDDAx = VDDMx = 4.5 ... 5.5 V, GNDx = 0 V, VIOx = 2.375 V ... VDDx, T_j = -40 ... 135 °C, unless otherwise noted.

ltem	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
V09	f _{Flash} ()	Flash Frequency at LEDx	VDDAx = VDDx = 0 V, TSLEEP_CC/SC = 0x0A, with error-free position detection; STEP* = 3 STEP = 2 STEP = 1 STEP = 0 * see page 54	2183 1092 448 207	4138 2103 850 391	6896 3448 1402 644	Hz Hz Hz Hz
V10	TCf	Temperature Coefficient of f _{Flash}		0.2		0.37	%/°C
V11	IB(VDDMx)	Average Supply Current VDDMx During Battery Operation	VDDAx = VDDx = 0 V, TSLEEP_CC/SC = 0x0A, with error-free position detection; STEP* = 3 STEP = 2 STEP = 1 STEP = 0 * see page 54		30 16 7 5		μΑ μΑ μΑ μΑ
V12	IL(VDDMx)	Leakage Current at VDDMx During Normal Operation	VDDAx = VDDx, VDDAx > VDDMx + Vt()hi	-1	0	1	μA
V13	Rd	Resistor between VDDMx and GNDx for Discharging	BLEED_CC = 1, LOAD_CC = 0 resp. BLEED_SC = 1, LOAD_SC = 0	35	50	80	kΩ
V14	Rc	Resistor between VDDMx and VDDAx for Charging	BLEED_CC=0, LOAD_CC=1 resp. BLEED_SC=0, LOAD_SC=1	35	50	80	kΩ
Alignr	nent Photod	liodes and Amplifiers (SC): DJH,	DJL	-			
W01	Aph()	Radiant Sensitive Area	RZ26xx RZ42xx		0.0085 0.015		mm ² mm ²
W02	Z()	Equivalent Transimpedance Gain	Z = Vout() / Iph(), Tj = 27 °C		8		MΩ
W03	TCz	Temperature Coefficient of Z			-0.25		%/°C
W04	fc()hi	Cut-off Frequency (-3 dB)			30		kHz
W05	Vout()d	Dark Signal Level	no illumination, TEST_SC = 0x19	0.6	0.9	1.15	V
W06	Δ Vout()pn	Signal Matching	no illumination, Tj < 50 °C	-20	0	20	mV
W07	lph()	Permissible Photocurrent Operating Range		0		250	nA
W08	lsc()hi	Short-Circuit Current hi	MO2, SDO2; TEST_SC = 0x19, load current to ground		-650		μA
W09	lsc()lo	Short-Circuit Current lo	MO2, SDO2; TEST_SC = 0x19, load current to IC		450		μA

Rev C1, Page 16/73

OPERATING REQUIREMENTS: BiSS, SSI Interface

ltem	Symbol	Parameter Conditions				Unit
No.				Min.	Max.	
BiSS (C Protocol					
1001	t _C	Permissible Clock Period		100	2x t _{out}	ns
1002	t _{L1}	Clock Signal Hi-Level Duration		50	t _{out}	ns
1003	t _{L2}	Clock Signal Lo-Level Duration		50	t _{out}	ns
1004	t _{P3}	Propagation Delay		see Elec.	Char. O07	
1005	t _{out}	Adaptive Slave Timeout		see Elec.	Char. O05	
1006	t _{busy}	Minimum Data Output Delay	visible for t _C > 4/fsys	2	t _C	
1007	t _{busy}	Maximum Data Output Delay	visible for $t_{\rm C}$ < 4/fsys	1.5 t _C + 4/fsys	2.5 t _C + 4/fsys	
1008	t _{S1}	Setup Time: SDI2 stable before SCI2 hi \rightarrow lo	see Figure 2	25		ns
1009	t _{H1}	Hold Time: SDI2 stable after SCI2 hi \rightarrow lo	see Figure 2	10		ns
1010	t _{IS}	Wait Time: Switching from BiSS to SPI and vice versa	IF_MODE = 0x0 (SC), see Figure 3	40		μs
1011	t _{frame}	Permissible Frame Repetition		*)	indefinite	
SSI Pr	otocol (SC	only, IF_MODE = 0x02, 0x03)	`			
1012	t _C	Permissible Clock Period	after t _{RQ}	250	2x t _{out}	ns
1013	t _{L1}	Clock Signal Hi-Level Duration		50	t _{out}	ns
1014	t _{L2}	Clock Signal Lo-Level Duration	note t _{RQ} as exception	50	t _{out}	ns
1015	t _{P3}	Propagation Delay		see Elec.	Char. O07	
1016	t _{out}	Slave Timeout		10	35	μs
1017	t _{RQ}	Processing Time		4/fsys		
1018	t _{frame}	Permissible Frame Repetition		*)	indefinite	

Note: *) Allow tout to elapse.

Control Channel

Figure 2: BiSS Protocol Timing (SC: IF_MODE = 0x0, 0x1). Signal MA refers to input SCI2, signal SLO to output SDO2, signal SLI to input SDI2.

Rev C1, Page 17/73

Safety Channel

Figure 3: Switching from BiSS to SPI (SC: IF_MODE = 0x0). Signals MA / SCLK refer to input SCI2, signals SLO / MISO to output SDO2, signals SLI / MOSI to input SDI2.

Figure 4: SSI Protocol Timing (SC: IF_MODE = 0x2, 0x3). Signal MA refers to input SCI2, signal SLO to output SDO2.

Rev C1, Page 18/73

OPERATING REQUIREMENTS: SPI Interface

ltem	Symbol	Parameter	Conditions	[Unit
No.				Min.	Max.	
1101	t _{C1}	Permissible Clock Period at SCLK		100		ns
1102	t _{L1}	Clock Signal lo Level Duration		50		ns
1103	t _{L2}	Clock Signal hi Level Duration		50		ns
1104	t _{W1}	Wait Time: Between NCS2 lo \rightarrow hi and hi \rightarrow lo		800		ns
1105	t _{S1}	Setup Time: NCS2 stable before SCLK lo \rightarrow hi		100		ns
1106	t _{P1}	Propagation Delay: MISO stable after NCS2 hi \rightarrow lo	CL = 10 pF		50	ns
1107	t _{P2}	Propagation Delay: MISO tristate after NCS2 lo \rightarrow hi	CL = 10 pF		50	ns
1108	t _{H1}	Hold Time: NCS2 lo after SCLK lo \rightarrow hi	valid for SPI mode 3	50		ns
1109	t _{H3}	Hold Time: NCS2 lo after SCLK hi \rightarrow lo	valid for SPI mode 0	50		ns
1110	t _{S2}	Setup Time: MOSI stable before SCLK lo \rightarrow hi		50		ns
1111	t _{H2}	Hold Time: MOSI stable after SCLK lo \rightarrow hi		50		ns
1112	t _{P3}	Propagation Delay: MISO stable after MOSI change	MOSI forwarded to MISO, CL = 10 pF		50	ns
1113	t _{P4}	Propagation Delay: MISO stable after SCLK hi \rightarrow lo	data output to MISO, CL = 10 pF		50	ns
1114	t _{W2}	Wait Time: SCLK stable after NCS2 Io \rightarrow hi	IF_MODE = 0x4, 0x5	800		ns
1115	t _{IS}	Wait Time: Switching from SPI to BiSS and vice versa	IF_MODE = 0x0, see Figure 6	40		μs

Safety Channel

Rev C1, Page 19/73

OPERATING REQUIREMENTS: MT Interface

ltem	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
1201	t _C	Clock Period		1/fm	10 ¹⁾	
1202	t _{L1} , t _{L2}	Clock Signal hi/lo Level Duration		5	0	%t _C
1203	t _S	Setup Time: Data stable before clock edge hi \rightarrow lo		100		ns
1204	t _H	Hold Time: Data stable after clock edge hi \rightarrow lo		100		ns
1205	t _{out}	Timeout		5.75		μs
1206	t _{frame}	Clock Frame Repetition		0.94	2.5	ms

Note: ¹⁾ see Elec. Char. E04

Figure 7: Multiturn SSI Interface Timing (x = 1, 2; MODE_MT = 0x0..0x5, 0x8..0xD)

OPERATING REQUIREMENTS: I²C Interface

ltem	Symbol	Parameter	Conditions		1	Unit
No.				Min.	Max.	
1301	t _C	Clock Period		1/fi	2c ²⁾	
Note: 2	ote: ²⁾ see Elec. Char. E05					
Safety	Channel					

Rev C1, Page 20/73

SYSTEM OVERVIEW

Overview

The iC-RZ is divided into two sections called the Control Channel (CC) and the Safety Channel (SC): each section decodes the absolute singleturn position from the code disc (CPW and SPW).

The code disc contains 3 different tracks: 1 incremental track of 1024 CPR, 1 absolute Pseudo-random Code track (10-bit PRC) and 1 auxiliary track (AT), where the

cycles per revolution depends on the device version. The two channels are on the same substrate, but are separated by a trench. Each channel features its own photodiodes for scanning the tracks of the code disc. Due to this, the absolute singleturn position is generated from two different code sections of the code disc. The following figure shows the general data flow.

According to the chip's sine/cosine photosensor layout, a phase-shift exists between the 3 different sine/cosine tracks as shown in the following figure (exemplary with 2048 CPR for the auxiliary sine/cosine track): As for the sine/cosine photosensors, there is also a permanent difference between the two 10-bit Pseudo-random code values. The PRC sensor sections are arranged to give a constant difference of 11.125 LSB, with respect to a 10-bit resolution.

Figure 10: Sine/Cosine phase-shift, °e = with reference to one electrical period

Figure 11: PRC position difference, °m = with reference to one mechanical revolution

Rev C1, Page 21/73

Because of the two generated positions the iC-RZ is suitable for use in safety-related applications. Therefor the system requirements and restrictions (particularly the use of the sin/cos signals) described in the appropriate Safety Implementation Manual must be considered.

For safety-related applications the appropriate Safety Implementation Manual has to be considered.

Control Channel (CC)

The Control Channel consists of the following blocks:

- Photodiodes with amplifiers for auxiliary sin/cos signals
- Photodiodes with amplifiers for 1024 CPR sin/cos signals
- Photodiodes with amplifiers and comparators for 10-bit PRC scanning
- 5-bit real-time interpolator for the sin/cos signals of 1024 CPR
- Multiturn section
- Diagnostics (e.g. sin/cos DC monitor)
- Serial BiSS interface for position data output and configuration
- Pin configuration inputs CFG10, CGF11
- LED control output (based on the auxiliary sin/cos signals)
- Index pulse generation

The generated position word of the Control Channel is called Control Position Word (CPW).

Safety Channel (SC)

The Safety Channel consists of the following blocks:

- Photodiodes with amplifiers for 1024 CPR sin/cos signals
- Photodiodes with amplifiers and comparators for 10-bit PRC scanning
- 5-bit real-time interpolator for the sin/cos signals of 1024 CPR
- Multiturn section
- Serial interface (BiSS/SSI, SPI) for position data output and configuration
- Serial I²C interface for configuration
- Diagnostics (e.g. sin/cos AC monitor)
- · Temperature sensor

The generated position word of the Safety Channel is called Safety Position Word (SPW).

I/O PIN OVERVIEW

Control Channel

The pins summarized in Table 1 are powered by VIO1 and have CMOS thresholds.

Control Channel					
Pins powe	red by VIO1				
Pin No.	Name	Pin No.	Name		
7	ADIOK1	10	CFG11		
8	MO1 ¹	11	CFG10		
9	MI1 ¹	12	MA1		
		13	SLO1		
	¹ Supplied by VDDM1 in battery-buffered mode.				

Table 1: Supply of digital pins (CC)

Safety Channel

The pins summarized in Table 2 are powered by VIO2 and have CMOS thresholds.

Safety Channel					
Pins powered by VIO2					
Pin No.	Name	Pin No.	Name		
14	SCL2	20	NCS2		
15	SDA2	21	NL2		
16	SDO2	22	MI2 ¹		
17	SCI2	23	MO2 ¹		
18	SDI2	24	NRES2		
	¹ Supplied by VDDM2 in battery-buffered mode.				

Table 2: Supply of digital pins (SC)

Rev C1, Page 22/73

CONFIGURATION PARAMETERS

Register Map Register Map	(CC) Page 23 (SC) Page 25	Synchronization OFF_MT OFF_ST DIR	on Logic Page 48 Multiturn Offset Data (SC) Singleturn Offset Data (SC) Code Direction (SC)
LED Control . ENIK VSET	LED Control Mode (CC) LED Control Amplitude (CC)	Multiturn Fund MODE_MT_CC SBL_MT_CC EBL_MT_CC	ctionsPage 50Multiturn Operating Mode (CC)MT Synchronization Bits (CC)MT Error Bits (CC)
I2C Interface (CRC_CFG CRC_OFF	SC) Page 33 CRC Value for General Configuration CRC Value for Output Format and Off- set	MODE_MT_SC SBL_MT_SC EBL_MT_SC TSLEEP_CC TSLEEP_SC LOAD_CC	Multiturn Operating Mode (SC) MT Synchronization Bits (SC) MT Error Bits (SC) Flashing Interval vs. Speed/Acc. (CC) Flashing Interval vs. Speed/Acc. (SC) Capacitor Charge current (CC)
Serial I/O Inter IF_MODE	face (SC) Page 35 Interface Mode	LOAD_SC BLEED_CC BLEED_SC	Capacitor Charge current (SC) Battery Discharge Current (CC) Battery Discharge Current (SC)
BiSS Interface DL_ST_CC DL_MT_CC IF_MODE CRC_ID DL_MT_SC	Page 36 Singleturn Data Length (CC) Multiturn Data Length (CC) Interface Mode (SC) CRC Start Value for Position Data (SC) Multiturn Data Length (SC)	Temperature S OTEMP TERR TWARN TWARNSW	Gensor (SC) Page 58 Temperature Offset Data Temperature Error Threshold Temperature Warning Threshold Undertemperature Warning Selection
DL_ST_SC	Singleturn Data Length (SC)	Diagnostics C EMASK_CC WMASK_CC	C Page 59 Error Masking (CC) Warning Masking (CC)
SPI Interface (IF_MODE	SC) Page 39 Interface Mode (SC)	NWRN_ECP	Warning Bit w/o ECP _L Status (CC)
CRC_ID DL_MT_SC DL_ST_SC	CRC Start Value for Position Data (SC) Multiturn Data Length (SC) Singleturn Data Length (SC)	Diagnostics S AMNR EMASK_SC WMASK_SC	C Page 62 Amplitude Monitoring Range Error Masking (SC) Warning Masking (SC)
Register Acce	ss Page 45	ENESIL	Error Bit on Latched Status
PROT_OFF	Register Protection for General Config- uration (SC) Register Protection for Output Format	Alignment TEST_CC SELRND_CC	
	and Offect (SC)	<u>5</u> 00	

Rev C1, Page 23/73

REGISTER MAP (CC)

OVERV	IEW CONTR	OL CHANNE	EL					
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Configu	ration				1		1	
0x00								
				not av	ailable			
0x0F								
Multitur	n Configuratio	on						
0x10	SBL_MT	_CC(1:0)	EBL_MT	_CC(1:0)		MODE_M	T_CC(3:0)	
0x11				TSLEEP	_CC(7:0)			
Interfac	e Configuratio	on						
0x12	0	0	DL_MT_	_CC(1:0)		DL_ST_	CC(3:0)	
0x13	0	0	0	0	0	0	0	NWRN_ECP
0x14								
				not av	ailable			
018	A 1 - 1							
Status M	lasking			EMACK	00(7:0)			
0x19				LIVIASK	CC(7:0)			
0x1A 0x1B				VIVIAGN	_00(7.0)			
UNID				not av	ailable			
0x2F				notur				
Test								
0x30	0	BLEED_CC	LOAD_CC			TEST_CC(4:0)		
0x31	VSET	Г(1:0)	ENIK	K(1:0)		SELRND	_CC(3:0)	
0x32								
				not av	ailable			
0x3F								
BiSS St	andard Regist	ter						
0x40				not av	ailable			
0x41								
0x42				Prof	le ID			
0x43								
0x44				0.	00			
 0x47				UX	.00			
0x48								
				not av	ailable			
0x6F								
Status M	/lessages*							
0x70	EB3L	EB2 _L	EB1L	EB0 _L	ESSIL	ERCL	ESTL	EINTL
0x71	EDC24 _L	ELEDCL	EAMPAL	EAMP24 _L	EAMPRL	0	EPDNL	ERL
0x72	EMTSYNCL	ESTSYNCL	IFFOR	WFOR	EFOR	ENRPCFG	ECPL	TEST
0x73								
				not av	ailable			
0x75								

Rev C1, Page 24/73

OVERV	VERVIEW CONTROL CHANNEL							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CMD_ST	CMD_STAT_CC Register (Revision)							
0x76			С	MD_STAT_CC(7	:0) (revision onl	y)		
Comma	nd Register: (CMD_CC(7:0)						
0x77				CMD_C	C(7:0)			
BiSS Ide	entifier (only r	eadable)						
0x78				Device ID	- 0x52 ('R')			
0x79				Device ID	- 0x5A ('Z')			
0x7A			ļ	Revision - CHIP	_REVISION(7:0))		
0x7B			Device	ID - (b"00" & DL	_MT_CC & DL_	ST_CC)		
0x7C				Device I	D - 0x00			
0x7D	Device ID - 0x00							
0x7E	Manufacturer ID - 0x69 ('i')							
0x7F				Manufacturer	ID - 0x43 ('C')			

* $_{\rm L}$ = latched status information, command SCLEAR required for reset

Table 3: Register map of Control Channel

Rev C1, Page 25/73

REGISTER MAP (SC)

OVERV	IEW SAFET	Y CHANNEL						
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Configu	ration	<u> </u>		<u> </u>		L	1	
0x00								
				not av	ailable			
0x0F								
Multitur	n Configuratio	on						
0x10	SBL_MT	_SC(1:0)	EBL_MT	_SC(1:0)		MODE_M	T_SC(3:0)	
0x11				TSLEEP	_SC(7:0)			
Interface	e Configuratio	on						
0x12	0	0	DL_MT	_SC(1:0)	0		DL_ST_SC(2:0)	
0x13		IF_MODE(2:0)		0	0	0	0	ENESTL
0x14	0	0	0	0	0	0	0	0
0x15	0	0			CRC_	ID(5:0)		
Diagnos	tic/Temperatu	ure Sensor Co	onfiguration					
0x16	AMNR	TWARNSW			OTEM	IP(5:0)		
0x17				TWAR	N(7:0)			
0x18				TERF	R(7:0)			
Status N	Masking							
0x19				EMASK_	_SC(7:0)			
0x1A				WMASK	_SC(7:0)			
0x1B				0	00			
 0v1D				ÛX	00			
Brotoot	Configuration							
	Conniguration			PROT (
					FG(7:0)			
	Format Confic	uration		0110_0	10(1.0)			
	-onnat Conny	Juration		OFE M	T(23·16)			
0x20					T(15:8)			
0x22					1T(7·0)			
0x23				OFF S	T(14:7)			
0x24				OFF ST(6:0)	()			DIR
0x25								
				0x	00			
0x2D								
0x2E				PROT_0	DFF(7:0)			
0x2F				CRC_C	FF(7:0)			
Test Cor	nfiguration							
0x30	0	BLEED_SC	LOAD_SC			TEST_SC(4:0)		
0x31	0	0	0	0		SELRND	_SC(3:0)	
0x32								
				not av	ailable			
0x3F								

Rev C1, Page 26/73

OVERV	IEW SAFET	Y CHANNEL						
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BiSS St	andard Regist	ter						
0x40		I2CDEV(2:0)				BSEL(4:0)		
0x41								
				Defined	by BiSS			
0x6F								
Status M	/lessages*							
0x70	EB3 _L	EB2 _L	EB1 _L	EB0 _L	ESSIL	ERCL	ESTL	EINTL
0x71	EMINL	EMAXL	0	EAMP24 _L	EAMPRL	0	EPDNL	ERL
0x72	NOEPR	ENRPCFG	ENRPOFF	ETEMPL	WTEMPL	ETSL	ECRC	TEST
0x73				TEM	P(7:0)			
0x74	EMTSYNCL	ESTSYNCL	IFFOR	WFOR	EFOR	EI2C _L	ECRC_OFF	ECRC_CFG
0x75	0	0	0	0	0	0	0	0
CMD_S	TAT_SC Regis	ter (Revision)						
0x76			С	MD_STAT_SC(7	7:0) (revision onl	y)		
Comma	nd Register							
0x77				CMD_9	SC(7:0)			
BiSS Ide	entifier							
0x78								
	BiSS Device Identifier							
0x7D								
0x7E								
			Bi	SS Device Man	ufacturer Identifi	er		
0x7F								

* $_{L}$ = latched status information, command SCLEAR required for reset

Table 4: Register map of Safety Channel

PHOTODIODES

Overview

Figure 12 shows the different photodiode tracks of iC-RZ. Both channels have incremental photodiodes for internal interpolation (2) and random track photodiodes for the absolute position (3).

Additionally, the Control Channel has auxiliary track photodiodes with differential analog outputs (1) which are also used by the LED control unit.

Auxiliary track photodiodes with differential analog outputs (CC)

The auxiliary track photodiodes generate the differential sine and cosine signals, which are output to PSIN, NSIN, and PCOS, NCOS, respectively. The number of cycles per revolution depends on the chip version and the corresponding code disc. These sin/cos signals allow to higher the resolution when connecting an external interpolation IC (e.g. iC-MR3).

The internal LED control circuit uses these sin/cos signals to adjust the LED current, to obtain an output amplitude of about 250 mV at PSIN, NSIN, and PCOS, NCOS (see Chapter LED CONTROL (CC)).

Using an external LED control is possible too; pin LEDC should then be left open. In this case the external LED control needs to evaluate the PSIN, NSIN, and PCOS, NCOS output signals and adjust the LED current to obtain amplitudes of about 250 mV again.

For accuracy of external interpolation, the system should be installed in a way that an optical contrast of at least 50 % is reached. This contrast ratio is visible as the AC to DC ratio of the electrical sin/cos output signals (see formula in Figure 13). Furthermore, a rea-

sonable optical contrast also avoids signal clipping due to amplifiers operating in saturation.

Figure 13: Signal level for contrast 70%

The output's DC voltage level rises with the intensity of illumination; the maximum possible output voltage (see Elec. Char. 106) can be reached at excessive illumination, and when the LED control tries to balance an optical contrast which is too poor. The status bit EAMPA signals those excessive conditions (see Table 74, page 60).

For reliable operation, however, a maximum differential signal is still output at PSIN against NSIN and at PCOS against NCOS to prevent an external LED controller from further increasing the LED current.

If single-ended sin/cos signals are required (with or without level shifting to VDD/2), these signals must be generated from P- versus Noutputs with VREF as ground reference.

Incremental track photodiodes for the internal 5-bit interpolator

The incremental track photodiodes generate the sine/cosine signals with 1024 cycles per revolution for the internal 5-bit real-time interpolator. These signals are only used for internal interpolation and can not be seen on pins in the normal function mode. The photodiode area and the amplifier gain of the 1024 CPR are designed to achieve the same amplitude (250 mV) as the auxiliary track with uniform illumination.

The layout of the photodiodes for the Control and the Safety Channel is such that the resulting signals of the channels have a 45 $^{\circ}$ phase shift relative to one another (see Figure 10, page 20).

Rev C1, Page 28/73

Control Channel status bits:

EAMP24 signals an incorrect amplifier operating point. EDC24 signals that the minimum working light level is not reached (see Table 74, page 60).

Safety Channel status bits:

EAMP24 signals an incorrect amplifier operating point. A $sin^2 + cos^2$ monitor signals with EMIN and EMAX where the amplitude lies in relation to the limits (for status bits see Table 83, page 63, for limits see Elec. Char. A01, A02).

PRC track photodiodes

The Pseudo-random Code (PRC) on the code disc is scanned by differential, leading/trailing photodiodes to

LED CONTROL (CC)

An external LED is powered by pin LEDC, and optionally by the pins LED1 (CC) **or** LED2 (SC) when a battery-buffered multiturn function is required.

In battery-buffered mode the pins LED1 (CC) or LED2 (SC) are used to flash the external LED to get the singleturn position and to update the internal multiturn counter (see description of **Battery-buffered revolution Counter** on page 54).

For this purpose the pins LEDC and LED1, **or** LEDC and LED2, must be connected to the LED.

If using an external LED control and LEDC is not connected, pin LED1 **or** LED2 can be connected additionally for battery-buffered revolution counting.

In fully supplied mode the internal LED control can be used for light regulation, based on the sine/cosine signals of the auxiliary incremental track. For this purpose, iC-RZ has a controlled high-side current source at pin LEDC to power the external LED.

By default the Square Control Mode is active which keeps the sum of the sine/cosine amplitude squares at a constant value ($\sin^2 + \cos^2 = \text{const.}$). For alignment or debugging, the mode of the regulation can be changed with parameter ENIK from Square Control Mode to a constant current mode.

get a secured position value. A selection signal for the leading or trailing photodiodes is generated by separate photodiodes scanning the 1024 PPR track (② in Figure 12).

A differential evaluation of the random photodiodes results in 10 digital comparator signals for each channel. These comparator signals represent the scanned random code with a bit length of 10 bits. The code offset between CPW and SPW equals 11.125 LSB.

These photodiodes can also be used for multiturn applications. For further information about the supervision and processing of these signals see the multiturn description.

Control Channel					
ENIK(1:0)	Addr. 0x31; bit 5:4				
Code	Current				
00	Square Control Mode (default)				
01	0 mA constant current				
10	4 mA constant current				
11	8 mA constant current				

Table 5: LED control mode

The target amplitude for the Square Control Mode is set with parameter VSET and must be set to default value of 250 mV (see Table 6).

Control Channel					
VSET(1:0)	Addr. 0x31; bit 7:6				
Value	Target Amplitude of Auxiliary Sin/Cos (AT)				
00					
01	not allowed				
10					
11	250 mV (default)				

Table 6: LED control amplitude

The status bit ELEDC (see Table 74, page 60) is set when the actual amplitude $(\sin^2 + \cos^2)$ is less than half of the target amplitude (<50% of 250mV).

Rev C1, Page 29/73

STARTUP PROCESS

The Control Channel (CC) and the Safety Channel (SC) are starting up according to the following sequence.

Figure 14: Overview of startup process

A reboot is performed on power-on, or can be triggered by sending the **REBOOT** command, or by applying a low level to pin NRES2 (Safety Channel only). A reset using the existing RAM configuration can be triggered by sending the **RESET** command.

The actual startup state can be tracked as follows:

Control Channel					
State	Pin ADIOK	BiSS			
Power-on	0	Position data*, nE, nW are set to 0			
Wait time tdr1()	0	Position data*, nE, nW are set to 0			
Configuration	0	Position data*, nE, nW are set to 0			
Waiting for valid position data	0	Position data, nE, nW are set to 0			
Operation	Z	Position data available			
Notes	* Data length is 9-bit ST by default until end of configuration.				

Table 7: Startup state detection CC

Safety Channel						
State	SPI	BiSS				
Power-on	disabled SDO2 = Z*	disabled SDO2 = Z*				
Wait time tdr1()	disabled SDO2 = Z* disabled SDO2 = Z					
Configuration	disabled SDO2 = Z* disabled SDO2 =					
Waiting for valid position data	Position data, nE, nW, LC are set to 0Position data, nE, nW, LC are set to					
Operation	Position data available, $LC \neq 0$ Position data available, $LC \neq 0$					
Notes	* Only if NCS2 = 1. Otherwise SPI transmission will be possible, but Position data, nE, nW, LC are set to 0.					

ĺ

VIO1 and VIO2 must both be up ahead of the power-up wait time tdr1() has elapsed (see Elec. Char. E06).

The state 'Operation' should have been reached ahead of position data requests via BiSS/SSI.

With an error-free startup this state is reached after tdr1() + tcfg() + tdr2() + tstg() + tmtg(). See Elec. Char. E06, E08, E07, E09, E10. Time tcfg(CC) is negligible due to pin configuration.

Configuration of Control Channel

After power-on reset, the initial configuration for the Control Channel is provided by pin configuration, from CFG11 and CFG10, which are 3-level sensitive. In any case, the Control Channel uses BiSS for register and sensor data communication.

Figure 15: Startup configuration CC

The pin states of CFG11 and CFG10 are sampled at startup – after the wait time tdr1() (see Elec. Char. E06) – and initialize the configuration parameters of the Control Channel according to Table 10.

Rev C1, Page 30/73

This includes the MT operating mode (MODE_MT_CC), the count of synchronization bits (SBL_MT_CC) and error bits (EBL_MT_CC), as well as the output length of singleturn and multiturn data (DL_ST_CC, and DL_MT_CC). Furthermore, the status messaging (EMT) is assigned.

The configuration registers are write-protected afterwards. However, the configuration of the Control Channel can still be changed, but only if the write protection has been deactivated before.

The pin states are monitored in operation. If any logic level differs from the original state at startup, status bit ECP is set. The configuration registers remain protected and are not updated.

Control Channel					
Addr.	Default Value	Description			
0x11	0xFF ^{*)}	TSLEEP_CC			
0x19	0x77	EMASK_CC			
0x1A	0x7F WMASK_CC				
0x31	0xC0 LED Square Control Mode 250mV				
Note	*) If no battery is connected to VDDM1 and until first configuration of the battery-buffered TSLEEP_CC value.				
	All other registers are preset with 0x00.				

Table 3. Delault configuration after power-on	Table 9:	Default	configuration	after	power-on
---	----------	---------	---------------	-------	----------

Control C	O sector 1 Observed							
Control C								
							Index	
CFG11/10 ¹	MOD	E_MT_CC	SBL_MT_CC	EBL_MT_CC	DL_ST_CC	DL_MT_CC	Pulse	EMT Status
0 0	0x6	(No multiturn)	00 (1 bit)	00 (no err)	0111 (16 bit)	00 (no MT)	-	0
0 1	0x0	(Synced Mode 12 bit)	10 (3 bit)	01 (1 err)	1111 (24 bit)	01 (12 bit)	-	EB30 or ESSI or ERC _C
0 x	0xA	(iC-LV Mode 12 bit)	10 (1 bit)	01 (1 err)	1111 (24 bit)	01 (12 bit)	-	EB30 or ESSI or ERC _C
10	0x3	(Synced Mode 16 bit)	10 (3 bit)	01 (1 err)	1111 (24 bit)	10 (16 bit)	-	EB30 or ESSI or ERC _C
11	0xE	(Internal counter	00 (1 bit)	00 (no err)	1111 (24 bit)	11 (24 bit)	\checkmark	EPDN _L or ERL _L or ERC _C
	battery-buffered)							
1 x	0xD	(iC-LV Mode 16 bit)	10 (1 bit)	01 (1 err)	1111 (24 bit)	10 (16 bit)	-	EB30 or ESSI or ERC _C
x 0	0x1 (iC-MV Mode 12 bit) 10 (3 bit) 01 (1 err) 1111 (24 bit) 01 (12 bit) - EB3.0 or ESSI or ERC				EB30 or ESSI or ERC _C			
x 1	0x4 (iC-MV Mode 16 bit) 10 (3 bit) 01 (1 err) 1111 (24 bit) 10 (16 bit) - EB30 or ESSI or EF				EB30 or ESSI or ERC _C			
хx	0xF (Internal counter) 00 (1 bit) 00 (no err) 1111 (24 bit) 11 (24 bit) √ ERC _C						ERC _C	
Notes	tes ¹ x = pin open or set to 1/2 of VIO1, or VIO2.							
	Multiturn parameters: MODE_MT_CC, EBL_MT_CC and SBL_MT_CC, see Table 53, page 51 ff.							
	Output data length: DL_MT_CC, DL_ST_CC, see Table 20, page 37 f.							
	Index pulse output see page 57							
	EMT status information see Table 76, page 60							

Table 10: Pin configuration of Control Channel.

Rev C1, Page 31/73

Configuration of Safety Channel

Figure 16: Startup configuration SC

After power-on reset and expiration of the wait time tdr1() (see Elec. Char. E06) the configuration of the Safety Channel is read from an external EEPROM via the l^2C interface.

The timing for the configuration phase depends on the I^2C status, see elec. char. E08 for more information.

If no EEPROM is connected or if the CRC check fails in any of the two configuration areas, the internal registers of the failing CRC check section are preset with the values given in Table 11.

If CRC_CFG is correct, the battery-buffered TSLEEP_SC value is compared with the TSLEEP_SC value read from the EEPROM. In case of a mismatch between the two (e.g. after battery replacement), the battery-buffered TSLEEP_SC is updated with the EEPROM value.

If no EEPROM is connected or if the CRC_CFG crc check fails, the absolute position data is not available. If position data is requested, a zero value is returned. In addition, within the BiSS SCD, SPI position read command response, or extended SSI frame, the error and warning bits are active (nE = nW = 0).

If error and warning bits are both active, iC-RZ must be configured including a valid CRC_CFG and CRC_OFF by using the serial interface. After the configuration, CMD_SC = **RESET** must be executed to start the position data generation.

The Safety Channel can use BiSS, SSI, Extended SSI or SPI for sensor data communication and BiSS or SPI for register communication.

Safety Channel				
Addr.	Default Value Description			
0x10	0x06	No multiturn		
0x11	0xFF ^{*)}	TSLEEP_SC		
0x17	0xBD	TWARN: 125 °C		
0x18	0xCC TERR: 140 °C			
0x19	0xDF EMASK_SC			
0x1A	0xDF	WMASK_SC		
Note	*) If no battery is connected to VDDM2 and until first configuration of the battery-buffered TSLEEP_SC value.			
	All other registers are preset with 0x00.			

Table 11: Default configuration with wrong CRC_CFG or w/o EEPROM

The startup sequence for getting valid position data is the same for the Control Channel and Safety Channel. The position data generation is started after wait time

The timing depends on the configuration, status of the illumination and the status of the external MT sensor. For more information see Elec. Char. E09 and E10.

A valid ST position (only random track) is awaited, and

after getting 3 valid ST positions, the MT interface is

If activated, the MT interface reads the connected MT slaves, and after receiving 2 correct data values the channel switches to operation mode. After a maximum

of 64 failed MT read attempts, the status bit ESSI is

set and the state switches to operating mode, but with deactivated MT interface. Thereafter, no further clock

tdr2 has elapsed (see Elec. Char. E07).

activated if enabled.

pulses are output at MO1/MO2.

Rev C1, Page 32/73

Position data initialization

Figure 17: Position data initialization

Rev C1, Page 33/73

I2C INTERFACE (SC)

Figure 18: Example of line signals for I2C protocol: write single byte to EEPROM. The second part of the slave address (lower 8 bits) is representing the register address.

General

To automatically configure the Safety Channel at startup an external I^2C memory (EEPROM) can be connected at the pins SDA2 and SCL2.

The I^2C protocol uses a 7-bit slave ID (0b"1010 AAA") and an 8-bit register address.

I2C Master Performance				
Protocol	Standard I ² C			
Clock Rate (Output)	125 kHz max. (refer to Elec.Char. E05			
Addressing	11-bit: 8-bit register address plus 3-bit block selection			
Access Trials	Read: 3x at power-up with CRC failure			
Multi-Master Capability	Yes			
EEPROM Device Requirements				
Supply Voltage	2.375 V to 5.5 V			
Addressing	11-bit address max.			
Device Address	0x50 ('1010 000' w/o R/W bit), 0xA0 ('1010 0000' with R/W=0)			
Page Buffer	Not required (byte write only)			
Recommended Size	16 Kbit (8x 256x8 bits = 2048 Bytes), type 24C16			

Table 12: EEPROM interface performance

If the startup fails, e.g. no EEPROM or incorrect CRC_CFG, the status bits NOEPR or ECRC are set (see Table 84). In this case, the configuration with valid CRC_CFG must be written into the RAM via BiSS or SPI. The command CMD_SC = RESET then has to be executed.

Communication problems, e.g. no slave acknowledge, are signaled on status bit EI2C (see Table 85).

Programming Hint: After writing a byte to the EEPROM, the same byte should be read back. Several read attempts may be required if the I²C interface is still blocked, causing iC-RZ to refuse the read access. When writing to the EEPROM without reading the byte back, a waiting time longer than the write processing time of the EEPROM (typ. about 4 ms) must be allowed after each register.

CRC: General and Output Format Configuration

The configuration for the iC-RZ is split into two areas.

- General configuration (addr. 0x10 to 0x1F)
- Output format configuration for position data (addr. 0x20 to 0x2F)

Each section has its own CRC security against change of configuration. Both the general configuration data and the output format configuration data are protected with a 8-bit CRC (CRC_CFG, CRC_OFF).

At startup the configuration is read and the CRC values are checked. If the check in one configuration section fails, all registers of this configuration section are initialized with the values given in Table 11, the status bit ECRC and according to the failing CRC check ECRC_OFF or ECRC_CFG are set (see Table 84, and 85).

During operation the CRC is checked continuously with the internal system clock fsys (see E01) and the status is displayed at ECRC. If the continuous CRC check fails, zeroed position data is output but no re-initialization is triggered (as it would be the case on reboot/power-on).

Rev C1, Page 34/73

Safety Channel					
CRC_CFG(7:0) Addr. 0x1F; bit 7:0					
Code	Description				
0x0					
	CRC value for configuration data (0x10 to 0x1A, 0x1E)				
0xFF					
Note	Polynomial 0x11D, start value 0x04				

Table 13: CRC value for general configuration

Safety Channel						
CRC_OFF(7:0) Addr. 0x2F; bit 7:0						
Code	Description					
0x0						
	CRC value for offset data (0x20 to 0x24, 0x2E)					
0xFF						
Note	Polynomial 0x11D, start value 0x04					

Table 14: CRC value for output format configuration

The user must calculate the correct CRC_CFG and CRC_OFF values when configuring the EEPROM content for the iC-RZ Safety Channel. An example of a CRC calculation routine for CRC_CFG is given in Listing 1.

```
unsigned char ucDataStream = 0;
int iCRC_CFGPoly = 0x11D;
unsigned char ucCRC_CFG;
int i = 0;
ucCRC_CFG = 4; // start value !!!
// Reg 0x10 to 0x1A
for (iReg = 0x10; iReg<0x1B; iReg ++)
{
   ucDataStream = ucGetValue(iReg);
for (i=0; i <=7; i++) {
    if ((ucCRC_CFG & 0x80) != (ucDataStream & 0x80))
    ucCRC_CFG = (ucCRC_CFG << 1) ^ iCRC_CFGPoly;
      else
         ucCRC_CFG = (ucCRC_CFG << 1);
      ucDataStream = ucDataStream << 1;
   }
}
// Reg 0x1E
ucDataStream = ucGetValue(iReg);
   ifor (i=0; i<=7; i++) {
    if ((ucCRC_CFG & 0x80) != (ucDataStream & 0x80))</pre>
         ucCRC_CFG = (ucCRC_CFG << 1) ^ iCRC_CFGPoly;
      else
      ucCRC_CFG = (ucCRC_CFG << 1);
ucDataStream = ucDataStream << 1;
   }
```

Listing 1: C++ example of CRC_CFG checksum calculation

Rev C1, Page 35/73

SERIAL I/O INTERFACES

Both channels have a serial interface to read position data and to write and read registers.

Control Channel

The Control Channel uses the BiSS protocol with the I/O pins summarized in Table 15.

Control Channel					
Pin	BiSS	Function			
MA1	MA	Master Clock In			
SLO1	SLO Slave Data Out				
-	SLI ¹ Slave Data In				
Note	¹ internally connected to ground				

Table 15: Control Channel serial interface pins

Safety Channel

The Safety Channel is capable of using the BiSS, SSI, Extended SSI or SPI protocol with the I/O pins summarized in Table 16.

Safety Channel						
Pin	BiSS/SSI	SPI	Function			
NL2	'1'	NL	Not Latch In			
NCS2	'1'	NCS	Not Chip Select In			
SCI2	MA	SCLK	Master Clock In			
SDO2	SLO	MISO	Slave Data Out			
SDI2	SLI	MOSI	Slave Data In			

Table 16: Safety Channel serial interface pins

The parameter IF_MODE selects the interface protocol. With IF_MODE set to BiSS/SPI (0x0) the logic level at pin NCS2 selects the BiSS or the SPI protocol.

If IF_MODE is set to SPI or SPI-NL (0x4, 0x5), pin SDO2 switches to tristate while iC-RZ is not selected (NCS2 = hi).

Safety Channel				
IF_MODE(2:0) Addr. 0x13; bit 7:5				
Code	Function	Notes		
0x0	BiSS/SPI	NCS2 = hi $ ightarrow$ BiSS		
		$NCS2 \texttt{=} Io \to SPI$		
0x1	BiSS			
0x2	SSI			
0x3	EXTSSI			
0x4	SPI	SDO2 is tristate if NCS2 = hi		
0x5	SPI-NL	$NL2 = hi \rightarrow lo:$ sensor data is requested with the falling edge of NL2; SDO2 is tristate if NCS2 = hi		
0x6, 0x7	reserved			

Table 17: Interface mode

Using the serial interface, position data can be obtained only if CRC_CFG and CRC_OFF are both valid.

When operating the channels in BiSS chain, the Control Channel must be in front (no SLI input) and occupy the BiSS slave ID 0.

Rev C1, Page 36/73

BISS INTERFACE

² 6 bit LC only available in safety channel

Figure 19: BiSS protocol single cycle data (actual pin names see Table 15, 16)

Overview

BiSS Slave Performance				
Parameter	Symbol	Description		
Clock Rate	t _C	10 MHz max.		
Timeout	t _{out}	adaptive (typ. 0.35 µs @ 10 MHz)		
Control Channel				
Safety Channel				
Process.T.	t _{busy} 1	typ. 0.5µs		
Inp. Buffer		8 bit max. for SLI data buffering		
SCD Channel 1: Position Data				
Bits/cycle	ID	Description		
Control Channel				
12, 16, 24	MT	Multiturn Data (right-justified)		
16, 20, 24	ST	Singleturn Data (left-justified)		
1	nE ²	Error bit ERR		
1	nW ²	Warning bit WARN		
6	CRC ³	Polynomial 0x43, start value 0x00		
Safety Channel				
12, 16, 24	MT	Multiturn Data (right-justified)		
9 16	ST	Singleturn Data (left-justified)		
1	nE ²	Error bit ERR		
1	nW ²	Warning bit WARN		
6	LC	Sign-of-life Counter		
16	CRC ³	Polynomial (0x190D9), adjustable start value ⁴		
CD Channel: Control Data				
Bits/cycle	ID	Description		
Control Channel				
Safety Channel				
1	nCDM ² , CDS	Full support of bidirectional register access and selected BiSS protocol commands (see Table 19)		
Notes	 See Operating Requirements, items 1006, 1007; Low active transmission Bit inverted transmission. See Table 24 for CRC_ID 			

Table 18: BiSS slave performance

The BiSS C interface serial bit stream is binary coded. The error and warning bits are low active. Transmission of sensor and register data is implemented. The BiSS protocol is compatible with the BiSS Safety Standard for the Control and Safety Position Words (CPW resp. SPW).

BiSS protocol commands

BiSS C protocol commands are supported according to Table 19. These commands can be used for BiSS bus establishment if more than 8 slaves are connected to the BiSS Master.

CD Channel: BiSS Protocol Commands				
Control Channel				
Safety Channel				
CMD	Availability	Function		
Addressed				
00	Yes	Activate Single-Cycle Data channels		
01	<u> </u> *	Deactivate control communication		
10	—	Reserved		
11	—	Reserved		
Broadcast (to all slaves)				
00	Yes	Deactivate Single-Cyc. Data channels		
01	—	Activate control communication		
10	—	Reserved		
11	—	Reserved		
Notes	* Command w/o function, but will be acknowledged.			

Table 19: BiSS Protocol Commands

Control Channel

Multiturn, singleturn position, error bit (nE) and warning bit (nW) can be transmitted in the single cycle data of the Control Channel. The data is secured with a 6-bit CRC transmitted inverted (nCRC).

A physical slave data input pin does not exist for the Control Channel. It acts as if a virtual slave data input is connected to low.

Thus the Control Channel must always be the last slave in a BiSS chain.

Rev C1, Page 37/73

The initial configuration of the singleturn and multiturn data length for the Control Channel (CPW) is done with pins CFG11/10 and is summarized in Table 20. The state of the pins CFG11/10 is latched at power-on and the resulting data length configuration is saved in parameters DL_ST_CC and DL_MT_CC.

-

See Table 10 for a summary of the Control Channel features configured with the CFG10 and CFG11 pins.

Control Channel			
Pins CFG11/10: Single Cycle Data Length			
CFG11	CFG10	DL_ST_CC	DL_MT_CC
0	0	16 bit ²	0 bit
0	1 / x ¹	24 bit ²	12 bit
x ¹	0	24 bit ²	12 bit
1	0 / x ¹	24 bit ²	16 bit
x ¹	1	24 bit ²	16 bit
1	1	24 bit ²	24 bit
x ¹	x ¹	24 bit ²	24 bit
Notes	With MT only 24 bit ST is possible (due to ADI of iC-MR3).		
	¹ x = pin ope	¹ x = pin open or set to 2.5V (= VIO1/2)	
	2 ST data is resolved to 15 bits; remaining bits are 0.		

Table 20: BiSS Configuration Control Channel

A temporary change of the ST and MT data length during operation is possible using parameters DL_ST_CC and DL_MT_CC.

Control Channel			
DL_ST_CC(3:0) Addr. 0x12; bit 3:0			
Code	ST length	Code	ST length
0000	9 bits	1000	17 bits
0001	10 bits	1001	18 bits
0010	11 bits	1010	19 bits
0011	12 bits	1011	20 bits
0100	13 bits	1100	21 bits
0101	14 bits	1101	22 bits
0110	15 bits	1110	23 bits
0111	16 bits	1111	24 bits
Note	Reset value configurable with pins CFG11/10		
	ST data is resolved to 15 bits; remaining bits are 0.		
	Settings marked b	Settings marked blue are available by pin	
	configuration at CFG11/CFG10.		

Table 21: Singleturn Data Length

Control Channel		
DL_MT_CC	(1:0) Addr. 0x12; bit 5:4	
Code	MT length	
00	0 bit	
01	12 bits	
10	16 bits	
11	24 bits	
Note	Reset value configurable with pins CFG11, CFG10.	
	All settings available by pin configuration.	

Table 22: Multiturn Data Length

Safety Channel

Figure 20: SSI protocol

The Safety Channel can be configured to use the BiSS, SSI or Extended SSI protocol using parameter IF_MODE (see Table 23). For an example of the BiSS signals refer to Figure 19, for the SSI signals refer to Figure 20.

Ensure that SLI (SDI2) is connected to GND2 if the BiSS interface of the iC-RZ Safety Channel is connected to a BiSS master in a point-to-point, single slave application.

i

To get position data after startup, the configuration data of the Safety Channel has to be marked valid by a correct CRC_CFG check (see info box on page 31).

The startup phase must be completed before BiSS/SSI communication. A minimum waiting time of **15 ms*** should be kept ahead of clocking at SCI2 (= MA). Alternatively, startup completion can be observed at pin SDO2 changing from tristate to driving high.

*) An external MT could add a delay. See chapter STARTUP PROCESS for further details on timings.

Rev C1, Page 38/73

Safety Channel		
IF_MODE(2:0) Addr. 0x13; bit 7:5		
Code	Function	Notes
0x0	BiSS/SPI	$NCS2 \texttt{=} hi \to BiSS$
0x1	BiSS	
0x2	SSI	
0x3	EXTSSI	

Table 23: Interface Mode: BiSS/SSI

When using the BiSS or the Extended SSI protocol (EXTSSI) a sign-of-life counter (LC) is transmitted after the nE/nW bits. The counter is incremented after every complete SCD frame transmission and has a value range of 1 to 63.

If the transmission is interrupted before sending the CRC value, the sign-of-life counter (LC) is not increased.

i

BiSS and SPI are using a shared sign-of-life counter, i.e. when using IF_MODE = 0x0 the LC will count on BiSS and SPI sensor data requests.

The data is secured with a 16-bit CRC transmitted inverted (nCRC). The start value for the CRC calculation can be configured with CRC_ID (see Table 24).

In the extended SSI mode all data is sent with the MSB first and is equivalent to the data package that is output when using the BiSS protocol.

Figure 21: Extended SSI protocol

Safety Channel		
CRC_ID(5:0) Addr. 0x15; bit 5:0	
Code	CRC start value	
000000	000000 (default)	
111111	111111	

Table 24: CRC Start Value for Position Data

The multiturn output data length can be configured with DL_MT_SC.

Safety Channel		
DL_MT_SC	(2:0) Addr. 0x12; bit 5:4	
Code	MT length	
00	0 bit	
01	12 bits	
10	16 bits	
11	24 bits	

Table 25: Multiturn Data Length

i

When using the SSI protocol with multiturn data, note that DL_MT has to be set to 12 bit to match Standard SSI.

The singleturn output data length can be configured with DL_ST_SC .

Safety Channel			
DL_ST_SC(2:0) Addr. 0x12; bit 2:0			
Code	ST length	Code	ST length
000	9 bits	100	13 bits
001	10 bits	101	14 bits
010	11 bits	110	15 bits
011	12 bits	111	16 bits ¹
Note	¹ ST data is resolv	ed to 15 bits; I	remaining bits are 0.

Table 26: Singleturn Data Length

When using the standard SSI protocol with singleturn data length (DL_ST) < 13 bits the SSI data word is zero filled to match an output data length of 13 bit.

Rev C1, Page 39/73

SPI INTERFACE (SC)

SPI Protocol

Figure 22: SPI protocol Safety Channel

Safety Channel	
SPI Sensor Data	
CRC Bits	16
Polynomial	0x190D9 ¹⁾
Start Value	programmable ²⁾
Closing Value	0xFFFF ³⁾
Error	1-bit low active
Warning	1-bit low active
Sign-of-life(LC)	6-bit
Notes	¹⁾ Polynomial with first and last 1
	²⁾ CRC_ID see Table 24
	³⁾ i.e. CRC transmitted inverted

Table 27: SPI SDAD transmission parameters

Safety Channel		
IF_MODE(2:0) Addr. 0x20; bit 7:5		. 0x20; bit 7:5
Code	Function	Notes
0x0	BiSS/SPI	$NCS2 = Io \to SPI$
0x4	SPI	SDO2 is tristate if NCS2 = hi
0x5	SPI-NL	$NL2 = hi \rightarrow lo:$ sensor data is requested with the falling edge of NL2; SDO2 is tristate if NCS2 = hi

Table 28: Interface Mode: SPI

The Serial Peripheral Interface (SPI) can be used to read/write registers and to read position data. SPI modes 0 and 3 are supported, i.e. idle level of SCLK 0 or 1, acceptance of data on a rising edge (see Figure 22).

iC-RZ is selected with a logic level 0 on NCS2. Data is sent in packets of 8 bits with the MSB first. Each data transmission starts with the master sending an opcode (Table 29) to the slave.

Safety Channel	
OPCODE	
Code	Description
0xB0	ACTIVATE
0xA6	SDAD-transmission (sensor data)
0xF5	SDAD Status
0x97	Read REGISTER(single)
0xD2	Write REGISTER (single)
0x81	Read REGISTER (cont.) delayed *
0xCF	Write REGISTER (cont.)
0x9C	Read STATUS (STATUS_SPW0STATUS_SPW3)
0xD9	Write INSTRUCTION (CMD_SC)
0xAD	REGISTER status/data
Notes	* Address range 0x00 to 0x2F can be read out, but data is only available from 0x10.

Table 29: SPI OPCODEs

Opcode ACTIVATE

Safety Channel		
OPCODE		
Code	Description	
0xB0	ACTIVATE	

Table 30: SPI Opcode: ACTIVATE

Figure 23: Set ACTIVATE: RACTIVE/PACTIVE

Using the opcode **ACTIVATE**, the register and sensor data channels of the connected slaves are switched on and off. After startup the register communication and

Rev C1, Page 40/73

data channel are activated, so no action by the user is necessary.

Safety Channel		
RACTIVE		
Code	Description	
0	Register communication deactivated	
1	Register communication activated*)	
PACTIVE		
Code	Description	
0	Sensor data channel deactivated	
1	Sensor data channel activated*)	
Note	*) default after startup	

Opcode Read REGISTER (single)

Opcode REGISTER status/data	a
-----------------------------	---

Safety Channel	
OPCODE	
Code	Description
0xAD	REGISTER status/data

Table 33: SPI Opcode: REGISTER status/data

Figure 25: Read Status and Data

Safety Channel	
OPCODE	
Code	Description
0x97	Read REGISTER (single)

Table 32: SPI Opcode: Read REGISTER (single)

Figure 24: Read Register: set the read address (1) + opcode REGISTER status/data to read--out data (2)

To read register data from the slave byte by byte, the opcode **Read REGISTER (single)** can be used. The master first transmits the Read REGISTER opcode followed by the address ADDR. The slave immediately outputs the opcode and address at MISO.

Following this, using the opcode **REGISTER status/data** the master can poll until the validity of the DATA following the SPI-STATUS byte is signaled via SPI-S-TATUS. The opcode **REGISTER status/data** can be used to request the status of the last register communication and/or the last data transmission. The SPI-STATUS byte contains the information summarized in Table 34.

All SPI status bits are updated with each register access. The exception to the rule is the ERROR bit; this bit indicates whether an error occurred during the last SPI-communication with the slave.

The master transmits the opcode **REGISTER status/**data. The slave immediately passes the opcode on to MISO. The slave then transmits the SPI-STATUS byte and a DATA byte.

Safety Cha	Safety Channel	
SPI-STATUS	3	
Bit	Name	Description of the status report
7	ERROR	Opcode not implemented, sensor data were not ready for output
64	-	Reserved
Status bits of the register communication		
3	DISMISS	Address rejected
2	FAIL	Data request has failed
1	BUSY	Slave is busy with a request
0	VALID	DATA is valid/register communication terminated successfully
Note	Display logic: 1 = true, 0 =	false

Table 34: Communication status byte

Following the opcode **Read REGISTER (single)** the requested data byte is returned via DATA. The validity of the DATA byte is signaled with the VALID status bit.

Following the opcode **Write REGISTER (single)**, the data to be written is repeated in the DATA byte. With all other opcodes, the DATA byte is not defined.

In general bits 0 to 3 of the SPI-STATUS byte reflect the status of the register communication.

Opcode Write REGISTER (single)

Safety Channel	
OPCODE	
Code	Description
0xD2	Write REGISTER (single)

Table 35: SPI Opcode: Write REGISTER (single)

Data is written to the slave byte by byte using the opcode **Write REGISTER (single)**.

The master first transmits the opcode **Write REGISTER** (single) followed by the address (ADDR) and the data (DATA). The slave immediately outputs the opcode, address, and data at MISO.

Using the opcode **REGISTER status/data**, the master can poll the end of communication (signaled via the SPI-STATUS byte).

Opcode Read REGISTER (cont.) delayed

Safety Channel	
OPCODE	
Code	Description
0x81	Read REGISTER (cont.) delayed

Table 36: SPI Opcode: Read REGISTER (cont.)

Figure 27: Read Register (cont.)

This opcode can only be used for reading data from internal registers. When reading data from internal registers the slave does not need any processing time.

The internal iC-RZ registers are addressed with BSEL = 0x0, 12CDEV = 0x0 and addr. 0x00 to 0x2F and also addr. 0x40 to 0x7F. These registers can be read out in continuous mode.

The master transmits the opcode **Read REGISTER** (cont.) delayed. In the second byte, the start address ADDR is transmitted. The slave immediately outputs the opcode, address followed by a ZERO-byte and then transmits the DATA1 data. The internal address counter is incremented following each data packet.

If an error occurs during register readout in continuous mode (e.g. the address is invalid or the requested data is not yet valid on data byte clock out), the internal address counter is no longer incremented and the error bit FAIL is set in the communication status register.

The **Read REGISTER (cont.) delayed** opcode can not be used to continuously read data from an external EEPROM as iC-RZ needs processing time to obtain the data.

The status of the register communication should be checked using the **REGISTER status/data** opcode.

Opcode Write REGISTER (cont.)

Safety Channel	
OPCODE	
Code	Description
0xCF	Write REGISTER (cont.)

Table 37: SPI Opcode: Write REGISTER (cont.)

Rev C1, Page 41/73

Rev C1, Page 42/73

NL2	NL2
NCS2\/	NCS2
sciz	scizīmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
SDI2 <mark>] 0xCF (ADDR(7:0)</mark> (DATA1(7:0) (DATA2(7:0) (SDI2 X 0x9C
SDO2 <mark>] 0xCF (ADDR(7:0)</mark> (DATA1(7:0) (DATA2(7:0) (SDO2 Correction Status1_SPW (Status4_SPW)
Figure 28: Write Register (cont.)	Figure 29: Read Status

When writing data into internal registers, the slave does not need any processing time.

1 The internal iC-RZ registers are addressed with BSEL = 0x0, 12CDEV = 0x0 and addr. 0x00 to 0x3F. These registers can be written in continuous mode.

The master transmits the opcode **Write REGISTER** (cont.). In the second byte start address ADDR is transmitted, followed by the DATA1-DATAn data packets to be written. The slave immediately outputs the opcode, address and data at MISO. The slave increments its internal address counter following each data packet.

If an error occurs while writing to a register in continuous mode (e.g. the address is invalid or the data write process of the last address was not finished), the internal address counter is no longer incremented and the error bit FAIL is set in the communication status register.

The opcode **Write REGISTER (cont.)** can not be used to continuously write data to an external EEPROM as the integrated I2C master requires processing time for each byte. Use the opcode **Write REGISTER (single)** instead.

The status of the register communication should be checked using the opcode **REGISTER status/data**.

Opcode Read STATUS

Safety Channel	
OPCODE	
Code	Description
0x9C	Read STATUS registers

The opcode **Read STATUS** gives access to the internal status registers and the temperature value.

The opcode is followed by a ZERO-byte and the STA-TUS1_SPW, STATUS2_SPW, STATUS3_SPW, TEMP and STATUS4_SPW bytes. For more information regarding the status bytes refer to page 62 ff. The temperature representation of TEMP can be found in Table 69, page 58.

The status of the register communication should be checked using the opcode **REGISTER status/data**.

Opcode Write INSTRUCTION

Safety Channel	
OPCODE	
Code	Description
0xD9	Write INSTRUCTION (CMD_SC)
Note	CMD_SC see page 67

Table 39: SPI Opcode: Write INSTRUCTION

Figure 30: Write INSTRUCTION

The opcode **Write INSTRUCTION** gives access to the internal, slave-specific command register. Command CMD_SC (see Table 94) is set with the instruction data byte (INST), which is send after the opcode.

The status of the register communication should be checked using the opcode **REGISTER status/data**.

Opcode SDAD-transmission

Safety Channel	
OPCODE	
Code	Description
0xA6	SDAD-transmission (sensor data)

Table 40: SPI Opcode: SDAD-transmission

Figure 31: Sensor data read with latching by SCI2 (IF MODE = 0x0, 0x4)

Figure 32: Sensor data read with latching triggered by NL2 (IF_MODE = 0x5)

To read position data, the opcode **SDAD-transmission** must be used.

The sample point for the internal data generation is defined as follows:

- IF_MODE = 0x0, 0x4: sample point defined by NCS = 0 and first rising edge SLC2 (see Figure 31)
- IF_MODE = 0x5: sample point defined by falling edges NL2 (see Figure 32). NL must stay at zero until the sensor data was read out using opcode SDAD transmission.

The slave is able to output the sensor data (SD) immediately after the master has send the opcode **SDAD transmission**. After the opcode the sensor data shift register is clocked out.

Rev C1, Page 43/73

The variable bit count for the sensor data following the SPI opcode **SDAD transmission** is derived from the parameters DL_ST_SC (Table 26). The sensor data is followed by one additional byte, consisting of one low-active Error bit, one low-active Warning bit and a 6 bit sign-of-life counter (range of values: 1 to 63). iC-RZ ensures that the total output data length is a multiple of 8 bits by adding zero-bits between the sensor data and the additional byte. The sensor data, optional zero-bits and the additional byte is secured with a 16 bit CRC formed with the polynomial 0x190D9 transmitted inverted (nCRC). The start value for the CRC calculation can be selected with the parameter CRC_ID (see Table 24).

SPI and BiSS are using a shared sign-of-life counter, i.e. when using IF_MODE = 0x0 the LC will count on SPI and BiSS sensor data requests.

If the internal data generation was not completed or iC-RZ is not ready for sensor data requests but data is sampled in the sensor data shift register, the ERROR bit is set in the SPI-STATUS byte (see Table 34) and the sensor data and the additional byte are set to zero.

Opcode SDAD status

Safety Channel	
OPCODE	
Code	Description
0xF5	SDAD Status (sensor data)

Table 41: Opcode: SDAD Status

NCS2	Latch Position	_/
SCI2		
SDI2		λ_
SDO2		Y

For compatibility issues with other iC-Haus products using this SPI protocol the opcode SDAD status is supported, i.e. sensor data can be requested using the opcode **SDAD status**. Each iC-RZ has one SVALID (SV) register to signal the end of conversion and one SFAIL (SF) register to signal a failing sensor data request. If iC-RZ is connected directly to the SPI master the SVALID (SV0) and SFAIL (SF0) bits are placed at bit positions 7 and 6 in the SVALID byte as shown in Figure 33.

Figure 33: SDAD status

The opcode SDAD status causes:

- All slaves activated with PACTIVE = 1 (see Table 31) to output their SVALID and SFAIL registers in the data byte following the opcode.
- The next request for sensor data started with the first rising edge at SCL2 of the next SPI communication is ignored by the slave.

Using this opcode, the master can cyclically poll for the successful end of the sensor data generation signaled with SVALID (SV). The sensor data is read out with the opcode **SDAD transmission**.

After SFAIL (SF) was set, the first rising edge at SCL2 of the next SPI communication requests new sensor data (Figure 34).

Safety Channel	
SVALID	
Code	Description
0	Sensor data generation in progress
1	Sensor data ready
SFAIL	
Code	Description
0	Sensor data request okay
1	Sensor data request failed, e.g. iC-RZ not ready for position data output

Table 42: SVALID and SFAIL bits

Figure 34 shows the interaction of the two opcodes **SDAD Status** and **SDAD transmission**. The sensor data communication starts with the opcode **SDAD Status** (1). The first **SDAD Status** requests new data. Following **SDAD Status** opcodes are used to check for the data to be ready to output (no new sensor data requests are issued). If the sensor data is signaled to be ready with SVALID (SV), the opcode **SDAD-transmission** (2) must be sent to read out the sensor data. At this point sensor data requests are enabled again. Finally the opcode **REGISTER status/data** should be executed to detect an unsuccessful SPI communication.

*) on the first rising edge at SCL2 of the next SPI communication

Figure 34: Example sequence of the opcodes SDAD Status/SDAD-transmission

If a test mode is activated, SPI communication is no longer possible. A reset per pin or a power cycle is required.

Rev C1, Page 44/73

Rev C1, Page 45/73

REGISTER ACCESS

Control Channel: BiSS

Figure 35 summarizes the accessible registers of the Control Channel using the BiSS protocol. For the configuration parameters of the Control Channel refer to chapter REGISTER MAP (CC).

Figure 35: Control Channel: accessible registers

Control Channel: Register protection

After startup the register write protection is enabled to prevent unwanted changes of the configuration data. CMD_CC = **RPL_RESET** can be used to disable the register write protection. CMD_CC = **RPL_SET_RO** can be used to enable the register write protection.

Figure 36: Setting/resetting register protection

Rev C1, Page 46/73

Safety Channel: SPI and BiSS

The Safety Channel uses BiSS or SPI for register communication and supports an addressing scheme using banks. Therefore the internal address space is divided into banks of 64 bytes each. The address sections are split into a dynamic section (addr. SER: 0x00 to 0x3F, content selectable with BSEL and I2CDEV) and a static section that is permanently available (addr. SER: 0x40 to 0x7F, content independent of BSEL and I2CDEV). The different memory banks can be addressed with BSEL. With I2CDEV set to 0x0, BSEL is used to address the EEPROM memory range from 0x000 to 0x7FF (11-bit address range) as well as the internal RAM content. Bank 0 selects the internal RAM content with the configuration parameters (refer to chapter REG-ISTER MAP (SC)). Starting with bank 1 the EEPROM is addressed. The memory map in Figure 37 summarizes the accessible registers and the EEPROM areas using the parameter BSEL.

Safety Channel		
BSEL(4:0)	Addr. 0x40; bit 4:0	
Code	Selected bank	
0x00	Bank 0	
0x1F	Bank 31	
Note	To access the iC-RZ configuration area, parameter I2CDEV must be set to 0x00.	

Table 43: Bank Selection

I2CDEV determines the I2C Device ID (upper 4 bits, see Figure 18, page 33). This enables access to I2C slaves other than the configuration EEPROM, which are connected to the same I2C bus using different I2C device IDs (see Figure 38 for address mapping).

Safety Channel	
I2CDEV(2:0) Addr. 0x40; bit 7:5
Code	Device ID
0x0	0b"1010"
0x1	0b"1001"
0x2	0b"1010"
0x3	0b"1011"
0x4	0b"1100"
0x5	0b"1101"
0x6	0b"1110"
0x7	0b"1111"
Note	Only devices with an addressing scheme similar to Figure 18 can be used.

Figure 37: EEPROM register map (I2CDEV = 0x00)

Rev C1, Page 47/73

Safety Channel: Register protection

The configuration data of the Safety Channel of iC-RZ is split into two areas.

- General configuration (addr. 0x10 to 0x1F)
- Output format configuration for position data (addr. 0x20 to 0x2F)

Each area has its own register protection against change of configuration.

Register protection for the general configuration data is configured with PROT_CFG, for the output format with PROT_OFF. A value other than 0x0 has to be written to PROT_CFG or PROT_OFF to set the register protection for the corresponding configuration data area.

Tables 45 and 46 summarize the affected addresses for each register protection area.

Safety Channel		
PROT_CFG		
	write	read&write
	protection	protection
Protection active for	PROT_CFG(6:0) /= 0	PROT_CFG(7) /= 0
Bank 0: Addr. 0x10 - 0x1F	\checkmark	\checkmark
Bank 0: Addr. 0x30 - 0x31	 ✓ 	\checkmark
Bank 1: Addr. 0x00 - 0x1F	 ✓ 	\checkmark
	write protection	on
Protection active for	PROT_CFG /= 0	
Bank 2-15	v	(
Addr. 0x41-0x6F	•	(

Table 45: PROT_CFG: Protected addresses

Safety Channel	
PROT_OFF	
	write protection
Protection active for	PROT_OFF /= 0
Bank 0: Addr. 0x20 - 0x2F	\checkmark
Bank 1: Addr. 0x20 - 0x2F	\checkmark

Table 46: PROT_OFF: Protected addresses

Register protection can be configured temporarily by setting PROT_CFG or PROT_OFF in the internal RAM (bank 0) or permanently by setting PROT_CFG or PROT_OFF in the EEPROM (bank 1). If it is enabled in the EEPROM, the register protection for each area is automatically activated after startup and a valid CRC check of the corresponding area. If it is enabled in the internal RAM, the register protection for each area is activated with the command **RESET** (see Table 94) if the CRC of the corresponding area is valid.

To reset the register protection of the configuration or output format register area, the register value of PROT_CFG or PROT_OFF respectively has to be written into the internal RAM (bank 0) again.

Figure 39:	Enabling/disabling	register	protection
•	0 0		

Safety Channel		
PROT_CFG	PROT_CFG(7:0) Addr. 0x1E; bit 7:0	
Code	Description	
0x00	No protection (default)	
0x01		
	Write protection	
0x7F		
0x80		
	Write and read protection	
0xFF		

Table 47: Register Protection for General Configuration

Safety Channel		
PROT_OFF	PROT_OFF(7:0) Addr. 0x2E; bit 7:0	
Code	Description	
0x00	No protection (default)	
0x01		
	Write protection	
0xFF		

Table 48: Register Protection for Output Format and Offset

The status of the register protection can be checked with status bits ENRPCFG and ENRPOFF (see Table 84). If set to '1', register protection is active.

Rev C1, Page 48/73

SYNCHRONIZATION LOGIC

Position Data Generation

The internal position signals are latched with an incoming position data request from the BiSS (CC and SC), SSI or SPI (only SC) interface.

The following position data is used:

- 5-bit interpolation value of 1024 CPR sine/cosine signals
- 10-bit absolute code from random track
- multiturn value (optional)

The internal interpolation is done using a real-time analog-to-digital converter with no processing time or delay, generating a 5-bit digital word.

Figure 40: Synchronization position value

The 10-bit absolute digital value, converted from the 10-bit absolute Pseudo-random Code, is synchronized with the 5-bit interpolation value.

The phase-shift between 1024 CPR sine/cosine and the random track should not exceed $\pm 90^{\circ}$. A precise alignment of code disc to sensor is required (see chapter ALIGNMENT page 68). The multiturn data is also synchronized with the 15-bit singleturn position data to obtain a continuous data value. For this purpose, the multiturn value must count up or down around the zero position of the singleturn to obtain the maximum margin of synchronization. For further details about the configuration of the multiturn system see chapter MULTITURN FUNCTIONS (page 50).

Safety Channel: Offset

For the Safety Position Word (SPW), a position offset can be programmed and an inversion of the code direction can be selected (see Figure 41).

Safety Cha	nnel
OFF_MT(23	:16) Addr. 0x20; bit 7:0
OFF_MT(15	::8) Addr. 0x21; bit 7:0
OFF_MT(7:	0) Addr. 0x22; bit 7:0
Code	Description
0x000000	
	Multiturn Offset Data (right,aligned, LSB position fix, zero-padded, see Figure 41)
0xFFFFFF	

Table 49: Multiturn Offset Data

Safety Cha	nnel
OFF_ST(14	:7) Addr. 0x23; bit 7:0
OFF_ST(6:0) Addr. 0x24; bit 7:1
Code	Description
0x0000	
	Singleturn Offset Data (left-aligned, MSB position fix, zero-padded, see Figure 41)
0x7FFF	

Table 50: Singleturn Offset Data

To get the same position as the Control Channel (CPW), a ST offset of about 356 has to be set. The effective value has to be measured for each system.

Safety Channel		
DIR	Addr. 0x24; bit 0	
Code	Description	
0	Code direction not inverted	
1	Code direction inverted	

Table 51: Code Direction

Rev C1, Page 49/73

Figure 41: Offset and code direction calculation (Safety Channel only)

Rev C1, Page 50/73

MULTITURN FUNCTIONS

 $^{\rm 9}{\rm CC}$: first option pin programmable; second option configurable with MTMODE

Figure 42: External serial MT interface: SSI protocol with possible MT data formats

The Control Channel and the Safety Channel are both multiturn (MT) capable. The MT functions are identical, just the way of configuration is different. The MT information can be obtained from an external or internal data source:

- External MT sensors connected to the internal MT interface (SSI)
- Internal 24-bit revolution counter

MT Interface (SSI)

Control Channel	
Safety Channel	
MT Parameter: SS	61
typ. Timing	
Clock frequency	150 kHz
Timeout	20 µs
Cycle time	1.5 ms
Data length	
Data length	12/16 bit
Sync. bits	CC pin config: 1 or 3; SBL_MT_x: 1-4
Error bits (active low)	CC pin config: 0 or 1; EBL_MT_x: 0-4
Control Channel	
Function	Pin
Clock output	MO1
Data input	MI1
Safety Channel	
Function	Pin
Clock output	MO2
Data input	MI2

Table 52: External MT protocol parameters

Key features:

- SSI Master
- · SSI Protocol with sync and error bit
- MT data formatted as one word (synced) or parts of words (unsynced)
- Adjustment mode available (see Table 62, p. 54)

The internal SSI MT master is reading the MT information from external MT sensors. Pin MO1 is the clock output and MI1 the data input of the Control Channel. Pin MO2 is the clock output and MI2 the data input of the Safety Channel.

The number of clock cycles depends on the configuration of the MT interface. MT data can be received as one word or as parts of words, each with its own synchronization bits. The MT interface uses the synchronization information to synchronize the parts of words of the MT data to each other and synchronizes the resulting MT data word to the ST data.

The tolerable phase shift / synchronization range depends on the number of synchronization bits. The optimum phase shift (mechanical offset) is in the middle of the synchronization range.

The number of error bits which are send with the MT data package is configurable.

Rev C1, Page 51/73

The CC and SC MT masters are checking the following protocol error conditions. If violated, the status bit ESSI (see Table 73, page 60) is set.

Protocol checks (x = 1, 2):

- 1. MIx line is 1, right before the first MOx falling edge
- MIx line is 0, right after the last MOx rising edge (Stop-Zero)

If the first protocol check is not valid (MIx=0) no clock pulse at MOx is generated

The first protocol check verifies, that the previous read frame was correctly finished and thus detects if MI1 or MI2 is stuck-at-zero. To verify the correct timeout and protocol length and to detect if MI1 or MI2 is stuckat-one, the second check is used.

Multiturn Configuration: Control Channel

The MT master interface of the CC can be configured with pins CFG10/CFG11 (see Table 53).

Control Channel				
Pins CFG11	Pins CFG11/10: MT Configuration			
CFG11/10	MT Data	Input Data		
No Multitur	n			
00	0 bit	No multiturn		
Synced mo	de (single biı	nary coded word)		
01	12 bit	12-bit data + 3-bit sync + 1-bit error		
10	16 bit	16-bit data + 3-bit sync + 1-bit error		
iC-MV Mode	Node (parts of words, binary coded)			
x0	12 bit	3 * (4-bit data + 3-bit sync) + 3-bit error		
x1	16 bit	4 * (4-bit data + 3-bit sync) + 4-bit error		
iC-LV Mode	iC-LV Mode (parts of words, Gray coded)			
0x	12 bit	3 * (4-bit data + 1-bit sync + 1-bit error)		
1x	16 bit	4 * (4-bit data + 1-bit sync + 1-bit error)		
Internal 24-	bit revolutior	n counter		
11 ¹	24 bit	Battery required		
xx ¹	24 bit	No battery required		
Note	x = pin open or set to 2.5V (=VIO1/2)			
	¹ Index-Pulse output at MO1 (see DIGITAL INDEX PULSE (CC))			

Table 53: Pin-Configured Multiturn Operating Mode

The state of the CFG10 and CFG11 pins is latched at power-on and the resulting MT configuration is saved in parameters MODE_MT_CC, SBL_MT_CC and EBL_MT_CC.

See Table 10 for a summary of the CC features configured with the CFG10 and CFG11 pins. When reading data from external MT sensors, pin MO1 is the clock output and MI1 the data input of the CC. These pins are supplied by VIO1. Refer to Figure 42 for an example of the line signals for the Synced Mode, iC-MV Mode and iC-LV Mode.

A temporary change of the MT mode, the synchronization settings, and the error bit length is possible. A change has an effect only after sending the **RESET** command.

Table 54 summarizes all possible MT modes for iC-RZ and their data length dependencies on SBL_MT_CC and EBL_MT_CC. The values selectable with pins CFG11/10 are marked in blue.

Control Channel			
MODE_MT_CC(3:0) Addr. 0x10; bit 3:0			
Code	MT Data Input Data		
No Multiturn			
0x6	0 bit	no multiturn	
Synced Mo	de (single bir	nary coded word)	
0x0	12 bit	12-bit + SBL_MT_CC + EBL_MT_CC	
0x3	16 bit	16-bit + SBL_MT_CC + EBL_MT_CC	
iC-MV Mode	e (parts of wo	ords, binary coded)	
0x1	12 bit	3* (4-bit + SBL_MT_CC) + 3* EBL_MT_CC	
0x4	16 bit	4* (4-bit + SBL_MT_CC) + 4* EBL_MT_CC	
iC-LV Mode	(parts of wo	rds, binary coded)	
0x2	12 bit	3* (4-bit + SBL_MT_CC + EBL_MT_CC)	
0x5	16 bit	4* (4-bit + SBL_MT_CC + EBL_MT_CC)	
Synced Mo	Synced Mode (single Gray coded word)		
0x8	12 bit	12-bit + SBL_MT_CC + EBL_MT_CC	
0xB	16 bit	16-bit + SBL_MT_CC + EBL_MT_CC	
iC-MV Mode (parts of words, Gray coded)			
0x9	12 bit	3* (4-bit + SBL_MT_CC) + 3* EBL_MT_CC	
0xC	16 bit	4* (4-bit + SBL_MT_CC) + 4* EBL_MT_CC	
iC-LV Mode	(parts of wo	rds, Gray coded)	
0xA	12 bit	3* (4-bit + SBL_MT_CC + EBL_MT_CC)	
0xD	16 bit	4* (4-bit + SBL_MT_CC + EBL_MT_CC)	
Internal 24-	bit revolutior	n counter	
0xE	24 bit	internal revolution counter battery-buffered	
0xF	24 bit	internal revolution counter	
Adjustment	Adjustment Mode		
0x7	32 bit	Adjustment mode (raw MT data, no sync to ST)	
Note	Settings man	rked blue are available by pin n (for a detailed mapping see Table 10).	
	The reset value depends on the pins CFG11/10.		

Table 54: Multiturn Operating Mode

Parameter SBL_MT_SC configures the number of synchronization bits and thus the possible synchronization range. The function of SBL_MT_CC in iC-LV Mode differs from the other modes (see Table 56).

Rev C1, Page 52/73

Control Channel			
For all MOD	For all MODE_MT_CC except iC-LV mode		
SBL_MT_C	C(1:0) A	ddr. 0x10; bit 7:6	
Value	Sync. Bits	Sync. Range	
00	1	±90 °m	
01	2	±135 °m	
10	3	±157.5°m	
11	4	±168.75 °m	
Note	°m = with reference to one mechanical revolution		
	Settings marked blue are available by pin configuration at CFG11 and CFG10.		
	The reset va	alue depends on the pins CFG11/10.	

Table 55: MT Synchronization Bits: iC-MV Mode and Synced Mode

Control Channel				
Only iC-LV	Only iC-LV Mode			
SBL_MT_C	C(1:0) A	ddr. 0x10; bit 7:6		
Value	Sync. Bits	Sync. Range		
00	1	Sync-slave and sync-master aligned (mounting offset = 0°m) => +/- 1 synchronization		
01	1	Sync-slave pre-positioned by 90°m with respect to sync-master => - 1 synchronization		
10	1	Sync-slave post-positioned by 90°m with respect to sync-master => + 1 synchronization		
11	1	Sync-slave and sync-master aligned (mounting offset = 0°m) => +/- 1 synchronization		
Note	Settings marked blue are available by pin configuration at CFG11 and CFG10.			
	The reset value depends on the pins CFG11/10.			
	This setting rules the synchronization from gear to gear stage, only between the iC-LV's. The MT to ST synchronization is not covered.			

Table 56: MT Synchronization Bits: iC-LV Mode

In iC-MV Mode and iC-LV Mode, parameter EBL_MT_CC configures the number of error bits related to each MT part of words. In the Synced Mode, EBL_MT_CC configures the overall error bit data length.

Control Channel				
EBL_MT_C	EBL_MT_CC(1:0) Addr. 0x10; bit 5:4			
Code	iC-LV/MV Mode (parts of words)	Synced Mode		
00	0	0		
01	1 (active low)	1 (active low)		
10	not allowed*	2 (active low)		
11	not allowed*	3 (active low) for 12 bit MT data or		
		4 (active low) for 16 bit MT data		
Note	Settings marked blue are available by pin configuration at CFG11 and CFG10.			
	The reset value depends on the pins CFG11/10.			
	*) An incorrect configuration of the error bit length EBL_MT_CC in iC-MV Mode or iC-LV Mode will be reported by the status bit ESSI.			

Table 57: MT Error Bits

Multiturn Configuration: Safety Channel

The MT interface of the Safety Channel can be configured with parameters MODE_MT_SC (see Table 58), SBL_MT_SC (see Table 59) and EBL_MT_SC (see Table 61).

After power-on, the MT parameters are only effective if the CRC_CFG is valid, i.e. if reading from the EEPROM was successful, or the **RESET** command was executed.

When reading data from an external MT sensor, pin MO2 is the clock output and MI2 the data input of the SC. Refer to Figure 42 for an example of the line signals for the Synced Mode, iC-MV Mode, and iC-LV Mode.

Safety Channel			
MODE_MT_S	C(3:0) A	ddr. 0x10; bit 3:0	
Code	MT data	Input Data	
No Multitur	n		
0x6	0 bit	No multiturn	
Synced Mo	de (one binar	y word)	
0x0	12 bit	12-bit + SBL_MT_SC + EBL_MT_SC	
0x3	16 bit	16-bit + SBL_MT_SC + EBL_MT_SC	
iC-MV Mode	e (parts of wo	ords, binary)	
0x1	12 bit	3* (4-bit + SBL_MT_SC) + 3* EBL_MT_SC	
0x4	16 bit	4* (4-bit + SBL_MT_SC) + 4* EBL_MT_SC	
iC-LV Mode	(parts of wo	rds, binary)	
0x2	12 bit	3* (4-bit + SBL_MT_SC + EBL_MT_SC)	
0x5	16 bit	4* (4-bit + SBL_MT_SC + EBL_MT_SC)	
Synced Mo	ode (one gray word)		
0x8	12 bit	12-bit + SBL_MT_SC + EBL_MT_SC	
0xB	16 bit	16-bit + SBL_MT_SC + EBL_MT_SC	
iC-MV Mode	e (parts of wo	ords, gray)	
0x9	12 bit	3* (4-bit + SBL_MT_SC) + 3* EBL_MT_SC	
0xC	16 bit	4* (4-bit + SBL_MT_SC) + 4* EBL_MT_SC	
iC-LV Mode	(parts of wo	rds, gray)	
0xA	12 bit	3* (4-bit + SBL_MT_SC + EBL_MT_SC)	
0xD	16 bit	4* (4-bit + SBL_MT_SC + EBL_MT_SC)	
Internal 24-	bit revolutior	n counter	
0xE	24 bit	internal revolution counter battery-buffered	
0xF	24 bit	internal revolution counter	
Adjustment	Mode		
0x7	32 bit	Adjustment Mode (raw MT data, no sync to ST)	
Note	Reset value 0x06: No multiturn		

Table 58: Multiturn Operating Mode

Parameter SBL_MT_SC configures the number of synchronization bits and thus the possible synchronization range. The function of SBL_MT_SC in iC-LV Mode differs from the other modes (see Table 60).

Rev	C1,	Page	53/1	3

Safety Channel				
For all MODE_MT_SC except iC-LV Mode				
SBL_MT_SC	SBL_MT_SC(1:0) Addr. 0x10; bit 7:6			
Code	Sync. Bits	Sync. Range		
00	1	±90 °m (Default)		
01	2	±135 °m		
10	3	±157.5 °m		
11	4	±168.75 °m		
Note	°m = with reference to one mechanical revolution.			

Table 59: MT Synchronization Bits: iC-MV Mode and Synced Mode

Safety Channel			
Only iC-LV	Mode		
SBL_MT_S	C(1:0) A	ddr. 0x10; bit 7:6	
Value	Sync. Bits	Sync. Range	
00	1	Sync-slave and sync-master aligned (mounting offset = 0°m) => +/- 1 synchronization	
01	1	Sync-slave pre-positioned by 90°m wrt sync-master => - 1 synchronization	
10	1	Sync-slave post-positioned by 90°m wrt sync-master => + 1 synchronization	
11	1	Sync-slave and sync-master aligned (mounting offset = 0°m) => +/- 1 synchronization	
Notes	This setting rules the synchronization from gear to gear stage, only between the iC-LV's. The MT to ST synchronization is not covered.		

Table 60: MT Synchronization Bits: iC-LV Mode

In iC-MV Mode and iC-LV Mode, parameter EBL_MT_SC configures the number of error bits related to each MT part of words. In the Synced Mode, EBL_MT_SC configures the overall error bit data length.

Safety Channel			
EBL_MT_S	C(1:0) Addr. 0x10; b	it 5:4	
Code	iC-LV/MV Mode (parts of words)	Synced Mode	
00	0	0	
01	1 (active low)	1 (active low)	
10	Not allowed*	2 (active low)	
11	Not allowed*	3 (active low) for 12 bit MT data or	
		4 (active low) for 16 bit MT data	
Note	An incorrect configuration of the error bit length EBL_MT in iC-MV or iC-LV Mode is reported on the status bit ESSI.		

Rev C1, Page 54/73

MT Adjustment Mode

The adjustment mode can be used to get the raw position information from the external MT sensors connected to the internal MT interface. To read out the raw position information, the BiSS protocol must be selected with IF_MODE = 0x0 or 0x1. The read out data length of the MT interface is changed according to Table 62 and no synchronization with the ST value is performed.

This enables the user to read the raw data from individual MT sensors of a gear box, e.g. with iC-MV, and to calculate the correct offset values which have to be programmed for each MT sensor.

Control Channel				
MODE_MT_CC(3:0)		Addr. 0x10;	bi	it 3:0
Safety Cha	nnel			
MODE_MT_SC(3:0) Addr. 0x10; bit 3:0			it 3:0	
Code	MT Ext. Data Length		DL_MT	
0x7	32 bit Forced to 32 bit			Forced to 32 bit
Note	After activation or deactivation of the adjustment mode, the command RESET must be executed for each channel (CMD_CC/CMD_SC = 0x11).			

Table 62: Configuration MT SSI format

For adjustment between ST and MT, use the adjustment mode with slow rotation speed only. This restriction applies because the MT data is latched with the normal MT readout cycle (see Op. Req. I206).

Internal 24-bit Revolution Counter

Key features:

- Utilization of the random track for revolution counting
- 24-bit revolution counter
- Integrated supply switch at VDDM1 / VDDM2
- Dedicated LED control pin (LED1 / LED2)

Reset Value Revolution Counter

The internal revolution counter is reset to value 0 only at power-on of the switched supply. The value read out depends on the ST position from the 10-bit random track at power-on.

Control Channel			
Safety Channel			
ST Position	ST Value*	MT Value	
< 180° m	0511	0	
\geq 180° m	5121023	-1 (= max. value)	
	*only 10-bit random value is used		

Table 63: MT value after power-on

Internal Revolution Counter (non-battery powered) The absolute value scanned from the random track is used to control the internal revolution counter.

In this mode the status messages $EPDN_L$ and ERL_L are not used. So after power-on, as soon as a correct ST position can be evaluated, the system is in an error-free condition (nE/nW bits are high).

Internal Revolution Counter (battery powered)

The Control Channel and the Safety Channel offer the possibility to maintain the respective internal revolution counter and to continue counting if the main power supply VDDA1/VDD1 (CC) or VDDA2/VDD2 (SC) has failed. To achieve this, the power supply of the MT circuit of the respective channel can switch to a battery supply connected to pin VDDM1 (CC), respectively to VDDM2 (SC).

In the following, the supply voltage switching (VDDA1/VDD1 \rightarrow VDDM1) and the LED flashing (output LED1) of the battery-buffered MT of the Control Channel is described. The same applies to the Safety Channel which uses the pins VDDA2,VDD2, VDDM2 and LED2 for this purpose.

If the main supply voltage on VDDA1 drops below the threshold voltage Vt()lo with respect to VDDM1, the internal circuit will be powered by VDDM1 instead of VDDA1 (see Elec. Char. V03).

In this battery-buffered mode, the LED will be flashed using pin LED1 (provides an unregulated constant current over a certain duration, see Elec. Char. V08) in order to read the singleturn position from the code disc and, if necessary, to update the internal revolution counter. Depending on the power source used, e.g. a 3.6 V battery with 0.55 Ah capacity, the device can operate for several years without losing the position information.

The battery-buffered MT feature requires additional external circuitry for proper operation, such as a bootstrap circuit, an RC filter at VD-DMx and a series resistor in the LEDx path. Further information can be found in the iC-RZ Series Application Note AN6.

Rev C1, Page 55/73

Note that the iC-RZ will operate in battery-buffered mode when a battery is connected during the shipment or storage. This can lead to a reduced lifetime of the battery, especially if the system is operated without a code disc.

If the battery-buffered MT feature of the Control Channel is not used, VDDM1 must be connected to VDDA1 and LED1 to GND1.

If the battery-buffered MT feature of the Safety Channel is not used, VDDM2 must be connected to VDDA2 and LED2 to GND2.

LED flashing is limited to a single output, either using LED1 or LED2, not both at a time.

To allow power savings, the LED flashing and multiturn update interval for battery operation can be adapted to the encoder's application requirements using TSLEEP_x (x = CC, SC). This battery-buffered register configures the maximum flashing interval of position evaluation, and determines the maximum speed and acceleration which can be tracked during a power failure.

The minimum battery load is obtained at standstill, depending on f_{Flash} , and increases with movements when STEP automatically highers the update rate via the position clock $f_{mc,min}$.

If a change of more than 45° is detected between measurements, a flash is triggered and the position sampling frequency is gradually increased (STEP: $0\rightarrow 1\rightarrow 2\rightarrow 3$). The frequency is gradually reduced (STEP: $3\rightarrow 2\rightarrow 1\rightarrow 0$), if a change of less than 11° is measured.

Control Channel		
Safety Channel		
STEP	Min. Internal Position Clock fmc,min	
0	18 kHz	
1	39 kHz	
2	95 kHz	
3	190 kHz	

Table 64: Position Clock Steps when Flashing

The following equation calculates the LED flashing frequency:

$$f_{\text{Flash}} = \frac{f_{\text{mc,min}}}{TSLEEP_x \cdot 8 + 7}$$
(1)

An adjustment to the required maximum rotational speed and acceleration is made by TSLEEP_x to achieve maximum battery life. The maximum rotational speed is calculated in [rpm] as follows:

$$\omega_{\max} = \frac{f_{\text{mc,min}} \cdot 60}{2 \cdot (TSLEEP_x \cdot 8 + 7)}$$
(2)

And the maximum acceleration (in rad/s²) is:

$$\alpha_{\max} = 2 \cdot \pi \cdot f_{\mathsf{Flash}}^2 \tag{3}$$

Table 65 provides some examples for different values of TSLEEP_x, calculated with the minimum position clock of Table 64. It must be considered that for the values of f_{Flash} it is assumed that the encoder shaft is stationary (STEP = 0), that f_{Flash} for the maximum rotational speed ω_{max} has increased (STEP = 3), and that the encoder shaft is accelerated from standstill (STEP = 0).

Control Channel			
TSLEEP_CC(7:0) Addr. 0x		(11; bit 7:0	
Safety Cha	nnel		
TSLEEP_SC(7:0) Addr. 0x	(11; bit 7:0	
Code	Max. 1/f _{Flash}	Max. Speed	Max. Acceleration
	[ms]	[rpm]	[rad/s ²]
0x00	0.39	814286	41545960
0x0A	4.83	65517	268959
0x64	44.83	7063	3126
0xFF	113.72	2785	486
Note	The reset value is 0xFF until the first configuration of the battery-buffered value, or if no battery is connected to VDDM1 resp. VDDM2.		

Table 65: Flashing Interval vs. Speed/Acceleration

Rev C1, Page 56/73

Check TSLEEP_SC Value (SC)

After startup, when using an EEPROM and CRC_CFG is correct, the battery-buffered TSLEEP_SC value is compared with the TSLEEP_SC value read from the EEPROM.

In case of a mismatch between the two, the battery-buffered TSLEEP_SC is updated with the EEPROM value and status bit ETSL is set (see chapter STARTUP PROCESS).

For the continuous CRC check during normal operation the battery-buffered TSLEEP_SC value is taken.

Using BLEED/LOAD

The register bit LOAD_x enables the charging of an external capacitor via the pin VDDM1 (CC) / VDDM2 (SC) in the main power mode.

The register bit BLEED_x enables discharging of the battery connected to pin VDDM1 (CC) / VDDM2 (SC) while main power is supplied, in order to "wake up" the battery.

This may be necessary depending on the battery used if the encoder has not been in battery-buffered mode for a long time. Please refer to the specification of the battery used in your application for further information.

Control Ch	annel		
LOAD_CC	Addr. 0x30; bit 5		
Safety Cha	nnel		
LOAD_SC	Addr. 0x30; bit 5		
Code	Description		
0	Capacitor load current out of VDDM1 (CC) / VDDM2 (SC) disabled		
1	Capacitor load current ¹ out of VDDM1 (CC) / VDDM2 (SC) enabled		
Note	¹ see Elec. Char. V14		

Table 66: Capacitor Charge Current

Control Channel			
BLEED_CC	Addr. 0x30; bit 6		
Safety Cha	nnel		
BLEED_SC	Addr. 0x30; bit 6		
Code	Description		
0	Discharge current in VDDM1 (CC) / VDDM2 (SC) disabled		
1	Discharge current ¹ in VDDM1 (CC) / VDDM2 (SC) enabled		
Note	¹ see Elec. Char. V13		

Table 67: Battery Discharge Current

LOAD_x and BLEED_x shall not be enabled at the same time.

Rev C1, Page 57/73

DIGITAL INDEX PULSE (CC)

The Control Channel can be configured to generate an index pulse (Z index) at the output pin MO1.

Control Channel		
Index Pulse output configured with CFG10/11		
CFG10/11	Z index pulse output	
11	at pin MO1	
xx ¹	at pin MO1	
else	no index pulse	
Note	¹ x = pin open or set to 2.5V (=VIO1/2)	
	See Table 10 for a summary of Control Channel features configured with the CFG10 and CFG11 pins	

Table 68: Z index pulse output

The random track photodiodes are evaluated and the resulting absolute position is taken to generate the Z index pulse. The generation of the index pulse is independent of the auxiliary sine/cosine signals at pins PSIN, NSIN, PCOS and NCOS.

If the mechanical alignment of iC-RZ is ideal, the Z index pulse rises at a positive zero crossing of the cosine signal (PCOS) and falls at the next positive zero crossing. Hence the pulse width is equal to one period of the cosine signals (see Figure 43).

There is no synchronization to the sine/cosine signals, so the actual phase of the index pulse depends on the mechanical alignment.

Auxiliary sine/cosine with index Z pulse

Figure 43: Z index pulse and sine/cosine track °m = with reference to one mechanical revolution, °e = with reference to one electrical period

Rev C1, Page 58/73

TEMPERATURE SENSOR (SC)

The value of the internal digital 8-bit temperature sensor can be read by BiSS or SPI register communication. The 8 bits of data represent a temperature in the range of -64 $^{\circ}$ C to 191 $^{\circ}$ C (see Table 69).

Safety Channel		
TEMP(7:0)	Addr. 0x73; bit 7:0	
Code	Temperature	
0x00	-64 °C	
0x01	-63 °C	
0x18	-40 °C	
0x40	0°C	
0x54	20 °C	
0xA4	100 °C	
0xFF	191 °C	

Table 69: Temperature Value

Its offset is calibrated using the parameter OTEMP (see Table 70).

Safety Channel		
OTEMP(5:0)) Addr. 0x16; bit 5:0	
Code	Temperature Correction	
0x00	0°C	
0x01	1 °C	
0x0F	15 °C	
0x10	-48 °C	
0x11	-47 °C	
0x3F	-1 °C	

Table 70: Temperature Offset Data

A continuous internal temperature monitoring is possible. A warning and error threshold can be programmed for this purpose. The message is generated if the temperature is higher than the threshold value.

Safety Channel		
TERR(7:0)	Addr. 0x18; bit 7:0	
TWARN(7:0) Addr. 0x17; bit 7:0	
Code	Temperature	
0x00	-64 °C	
0x01	-63 °C	
0x18	-40 °C	
0x40	O°C	
0xA4	100 °C	
0xFF	191 °C	

Table 71: Temperature Error/Warning Threshold

To switch from a overtemperature warning to an undertemperature warning, the polarity of the warning message can be selected.

Safety Channel		
TWARNSW	Addr. 0x16; bit 6	
Code	Temp	
0	Overtemperature warning	
1	Undertemperature warning	

Table 72: Undertemperature Warning Selection

Rev C1, Page 59/73

DIAGNOSTICS CC

The iC-RZ Control Channel provides various diagnostic features using an error/warning bit and several status registers. The status information can be observed using the following methods:

- Status registers (addr. 0x70 to 0x72)
- nE/nW bits in BiSS protocol
- Output pin ADIOK1

Amplifier Limit Monitor

All optical amplifiers in the Control Channel, which are involved in the position generation, contain limit monitors to detect an output saturation (upper limit reached). Amplifier errors EAMPA, EAMP24, EAMPR are visible in STATUS2_CC. An incorrect random code evaluation is in such case additionally messaged by ERL, also visible in STATUS2_CC.

Sin/Cos DC Monitor

The DC level of the 1024 CPR sin/cos signals is observed by an appropriate monitoring circuit, in order to detect a low LED illumination. In this case, status bit EDC24 is set (STATUS2_CC).

Interpolator Plausibility Check

The comparator code of the sine-to-digital converter is monitored. If the code is not feasible, because of erroneous sine/cosine signals or comparator errors, status bit EINT is set (STATUS1_CC). This check is triggered by a position data request only.

Note: If the 1024 sin/cos track signals get a too low amplitude, this can lead to an invalid converter code and thus the status bit EINT is set. (see Elec. Char. 806).

PRC Plausibility Check

The singleturn position of the 10-bit random track is generated synchronously with the internal system clock. With each clock pulse, the newly generated data is compared with the previous value. The comparison is valid within 0, +1 or -1 difference. In addition, the synchronicity of the 10-bit singleturn position to the interpolator is continuously monitored. If one of the diagnostic functions fails, STATUS1_CC bit EST will be set.

Multiturn Interface Protocol

The multiturn interface checks the following conditions while reading the external MT data:

- 1. MI1 line is 1, right before the first MO1 clock pulse. It verifies that the previous frame was correctly finished and detects if MI1 is stuck-at-zero.
- 2. MI1 line is 0, right after the last MO1 clock pulse (Stop-Zero). Verifies correct timeout and protocol length. Detects if MI1 is stuck-at-one.

If these conditions are not met, STATUS1_CC bit ESSI is set.

The error bits of the multiturn protocol are mapped to EB3..0 in STATUS1_CC (1 = error active).

Multiturn Plausibility Check

The incoming data from the multiturn interface is compared with its previous data. The comparison is valid within 0, +1 or -1 difference. In addition, the synchronicity of the multiturn position to the 10-bit singleturn position is continuously monitored. If one of the diagnostic functions fails, STATUS1_CC bit ERC is set.

24-bit Revolution Counter

If the internal 24-bit revolution counter is used to count the revolutions (see chapter MULTITURN FUNC-TIONS), a reset of the counter can be seen with EPDN_L status bit in the STATUS2_CPW. An erroneous evaluation of the random code track can be seen with ERL_L.

If the battery-buffered revolution counter is used, the status bits EPDN_L and ERL_L are battery-buffered (VDDM1) and evaluated at power-on. In supplied mode, only the ERL_L is used to detect an erroneous revolution counter. If enabled with EMASK_CC, the latched status information is used for the BiSS nE bit. To reset the status information of these bits, the command **SCLEAR** has to be exe-

Configuration

cuted.

i

The configuration pins CFG11/CFG10 are sampled on startup and the Control Channel is configured according to Table 10. During operation, the configuration pins are checked against the startup configuration. If the current logic levels of the configuration pins differ from the logic levels on startup, status bit ECP is set.

The configuration is write-protected after startup. The write protection can be disabled using the CMD_CC = **RPL_RESET** and re-activated with CMD_CC = **RPL_SET_RO**. The current protection status is shown by status bit ENRPCFG in STATUS3_CC.

Rev C1, Page 60/73

Internal Test Modes

If an internal test mode (TEST_CC \neq 0x00) is activated, it is reported with bit TEST, STATUS3_CC.

Status Registers

The following tables describe the status register mapping. For the status bits marked with $_{L}$ the relevant bit will be set in case of an error and maintained until the command **SCLEAR** is executed.

Control Channel		
STATUS1_CC Addr. 0x70; bit 7:0		. 0x70; bit 7:0
Bit	Name	Function
7	EB3 _L	MT interface error bit 3
6	EB2 _L	MT interface error bit 2
5	EB1 _L	MT interface error bit 1
4	EB0 _L	MT interface error bit 0
3	ESSIL	MT SSI protocol error
2	ERCL	RC error
1	ESTL	ST error (random)
0	EINTL	Converter code check error
Note	L = latched information, cleared by command SCLEAR; Error indication logic: 1 = true, 0 = false	

Table 73: Status byte 1: Control Channel

Control Channel		
STATUS2_C	C Addr	. 0x71; bit 7:0
Bit	Name	Function
7	EDC24 _L	1024 sin/cos track DC level error
6	ELEDCL	LED control error (see LED CONTROL (CC))
5	$EAMPA_L$	Auxiliary sin/cos track amplifier error
4	EAMP24 _L	1024 sin/cos track amplifier error
3	$EAMPR_{L}$	Random track amplifier error
2	0	not used
1	EPDNL	Power-down error VDDM1
0	ERL	Random logic error
Note	L = latched information, cleared by command SCLEAR; Error indication logic: 1 = true, 0 = false	

Table 74: Status byte 2: Control Channel

Control Channel			
STATUS3_C	STATUS3_CC Addr. 0x72; bit 7:0		
Bit	Name	Function	
7	EMTSYNC _L	Internal MT sync error	
6	ESTSYNC _L	Internal ST sync error	
5	IFFOR	Interface forced to use BiSS protocol	
4	WFOR	Warning forced by command:	
		CMD_CC = FORCE_WRN	
3	EFOR	Error forced by command:	
		CMD_CC = FORCE_ERR	
2	ENRPCFG	Register protection config.	
1	ECPL	Error CFG11/CFG10 pins	
0	TEST	Test mode active (TEST_CC ≠0x00)	
Note	L = latched information, cleared by command SCLEAR; Error indication logic: 1 = true, 0 = false		

Table 75: Status byte 3: Control Channel

The different status information of the multiturn part for the BiSS nE/nW bit are summarized in the status information EMT. Initially, the status EMT is defined along with the pin-configured MT configuration from CFG11 and CFG10, and is updated if changes are programmed.

Control Channel			
EMT bit cor	EMT bit configuration: dependence on pins CFG11/10		
CFG11	CFG10 EMT		
0	0	0	
0	1	EB30 or ESSI or ERC _C	
0	x	EB30 or ESSI or ERC _C	
1	0	EB30 or ESSI or ERC _C	
1	x	EB30 or ESSI or ERC _C	
1	1	$EPDN_{L}$ or ERL_{L} or ERC_{C}	
х	0	EB30 or ESSI or ERC _C	
х	1	EB30 or ESSI or ERC _C	
х	x	ERC _C	
Note	x = pin open or set to 2.5V (=VIO1/2)		
	See Table 10 for a summary of Control Channel features configured with the CFG10 and CFG11 pins.		
	$_{\rm C}$ = captured information for BiSS nE bit, cleared with the next BiSS communication.		
	L = latched information, cleared by command SCLEAR		

Table 76: EMT generation for nE/nW bit

BiSS Error bit nE

The status information setting the nE bit in the BiSS protocol can be selected using the EMASK_CC register.

Control Channel				
EMASK_CC	C Addr. 0x19; bit 7:0 RW			RW
Bit	Name	Default	Masking	
7	0	0	not used	
6	EMERL	1	ERL	
5	EMDC24	1	EDC24	
4	EMINT	1	EINT	
3	EMLEDC	0	ELEDC	
2	EMST	1	EST _C	
1	EMMT 1 EMT (see Table 76		EMT (see Table 76)
0	EMAMP 1		EAMPA or EAMP2	4
Note	$_{\rm C}$ = captured information, cleared with the next BiSS communication.			
	Encoding of bit 70: 0 = message disabled, 1 = message enabled			

Table 77: Error Masking

The status information which is active at the current position data request and which is configured with EMASK_CC are used for the nE bit. A reset of the status information is not required. One exception is the status of the Plausibility Check (EST_C and ERC_C, see EMT). The status information EST_C and ERC_C are captured and are reset with the next BiSS communication.

BiSS Warning bit nW

1

The status information setting the nW bit in the BiSS protocol can be selected using the WMASK_CC and NWRN_ECP registers.

Control Channel			
WMASK_CC Addr. 0x1A; bit 7:0		:0 RW	
Bit	Name	Default	Masking
7	0	0	-
6	WMERL	1	ERL
5	WMDC24	1	EDC24 _L
4	WMINT	1	EINTL
3	WMLEDC	1	ELEDCL
2	WMST	1	ESTL
1	WMMT	1	EMT _L (see Table 76)
0	WMAMP	1	$EAMPA_L$ or $EAMP24_L$
Note	L = latched information, cleared by command SCLEAR		
	Encoding of bit 70: 0 = message disabled, 1 = message enabled		

Table 78: Warning Masking

The messaging of ECP_L on the warning bit can be deactivated with NWRN_ECP.

Control Channel		
NWRN_ECP Addr. 0x13; bit 0		
Code	Description	
0	ECP _L messaging on nW enabled	
1	ECP _L messaging on nW disabled	

Tahla	70.	Warning	Rit w/o	ECP.	Statue
Table	19.	vvarning	DIL W/U	LOLL	Sidius

i

If a latched status message, marked with $_L$, is causing the BiSS nW bit to be set, the command **SCLEAR** must be executed (see Table 91) to reset the BiSS nW bit.

Pin ADIOK1

To signal a valid startup to an external device, the open-drain output pin ADIOK1 can be used. An external pull-up resistor is recommended.

If no MT interface is used, the position can be read by the BiSS interface after a valid ST position is generated. Otherwise, the ADIOK1 pin is set to high after a correct MT SSI communication or after the timeout for reading a correct MT value has expired (see chapter STARTUP PROCESS).

Control Channel			
Pin ADIOK	Pin ADIOK configured with CFG10/11		
CFG10/11	ADIOK1		
00	ADIOK = ST position ok		
11	ADIOK = ST position ok		
xx	ADIOK = ST position ok		
else	ADIOK = hi after MT read ok		
Note	x = pin open or set to 2.5V (=VIO1/2)		
	See Table 10 for a summary of control channel features configured with the CFG10 and CFG11 pins.		

Table 80: ADIOK1 Messaging

Rev C1, Page 62/73

DIAGNOSTICS SC

The status of the Safety Channel can be observed using the following methods:

- Status register (addr. 0x70 to 0x72 and 0x74)
- TEMP register (addr. 0x73) see chapter TEMPERATURE SENSOR (SC)
- nE/nW bit in BiSS/EXTSSI and SPI protocol
- Pin NRES2

Amplifier Limit Monitor

All optical amplifiers in the Safety Channel, which are involved in the position generation, contain limit monitors to detect an output saturation (upper limit reached). Amplifier errors EAMP24, EAMPR are reported in STA-TUS2_SC. An incorrect random code evaluation is in such case additionally messaged by ERL, also visible in STATUS2_SC.

Sin/Cos AC Monitor

The amplitudes of the 1024 CPR sin/cos signals are monitored by an internal $sin^2 + cos^2$ monitor circuit. If the limits for maximum or minimum amplitude are exceeded, status bits EMAX resp. EMIN are set in STA-TUS2_SC. With parameter AMNR, the monitor limits can be configured to a wide or a narrow range.

Safety Channel			
AMNR	Addr. 0x16; bit 7		
Code	Function		
0	Wide range		
1	Narrow range (recommended setting)		
Note	For limits see Elec. Char. A01, A02		

Table 81: Amplitude Monitoring Range

Interpolator Plausibility Check

The comparator code of the sine-to-digital converter is monitored. If the code is not feasible, because of erroneous sine/cosine signals or comparator errors, status bit EINT is set in STATUS1_SC. This check is triggered by a position data request only.

Note: If the 1024 sin/cos track signals get a too low amplitude, this can lead to an invalid converter code and thus the status bit EINT is set. (see Elec. Char. 806).

PRC Plausibility Check

The singleturn position of the 10-bit random track is generated synchronously with the internal system clock. With each clock pulse, the newly generated data is compared with the previous value. The comparison is valid within 0, +1 or -1 difference. In addition, the synchronicity of the 10-bit singleturn position to the interpolator is continuously monitored. If one of the diagnostic functions fails, STATUS1_SC bit EST will be set.

Multiturn Interface Protocol

The multiturn interface checks the following conditions while reading the external MT data:

- 1. MI2 line is 1, right before the first MO2 clock pulse. It verifies that the previous frame was correctly finished and detects if MI2 is stuck-at-zero.
- 2. MI2 line is 0, right after the last MO2 clock pulse (Stop-Zero). Verifies correct timeout and protocol length. Detects if MI2 is stuck-at-one.

If these conditions are not met, STATUS1_SC bit ESSI is set.

The error bits of the multiturn protocol are mapped to EB3..0 in STATUS1_SC (1 = error active).

Multiturn Plausibility Check

The incoming data from the multiturn interface is compared with its previous data. The comparison is valid within 0, +1 or -1 difference. In addition, the synchronicity of the multiturn position to the 10-bit singleturn position is continuously monitored. If one of the diagnostic functions fails, STATUS1_SC bit ERC is set.

24-bit Revolution Counter

If the internal 24-bit revolution counter is used to count the revolutions (see chapter MULTITURN FUNC-TIONS), a reset of the counter can be seen with EPDN_L status bit in the STATUS2_SC. An erroneous evaluation of the random code track can be seen with ERL_L.

If the battery-buffered revolution counter is used, the status bits EPDN_L and ERL_L are battery-buffered (VDDM2) and evaluated at power-on. In supplied mode, only the ERL_L is used to detect an erroneous revolution counter. If enabled with EMASK_SC, the latched status information is used for the BiS-S/EXTSSI/SPI nE bit. To reset the status information of these bits, the command **SCLEAR**

Temperature Monitor

has to be executed.

ĺ

The internal temperature sensor can be used to monitor the chip temperature. The temperature value TEMP can be read (see Table 69).

Rev C1, Page 63/73

An overtemperature error is signaled by bit ETEMP and an over or undertemperature warning by bit WTEMP (both in STATUS3_SC). For detailed information regarding the temperature sensor see chapter TEMPER-ATURE SENSOR (SC) page 58.

Configuration

If no EEPROM is detected at startup, status bit NOEPR (STATUS3_SC) is set. I2C communication problems, e.g. no slave acknowledge, are signaled on status bit EI2C (see Table 85).

The internal configuration and output format settings are secured with a CRC. The CRC check is executed automatically at startup after reading the EEPROM, and continuously during normal operation.

During normal operation it is done continuously. An erroneous CRC is reported with status bit ECRC (STA-TUS3_SC). Status bits ECRC_CFG and ECRC_OFF can be used to identify the configuration area(s) with the incorrect CRC (STATUS4_SC).

A register protection allows to protect the existing configuration from overwriting. The current protection status is shown by status bits ENRPCFG and ENRPOFF in STATUS3_SC.

The battery-buffered configuration value TSLEEP_SC is checked at startup with the value read from EEPROM. If the values are non-identical, the status bit ETSL is set. ETSL can be reset by writing a new TSLEEP_SC value using the serial interface.

For the initial CRC check after startup, the value read from the EEPROM is taken. The battery-buffered TSLEEP_SC value is taken for the continuous CRC check during normal operation.

Internal Test Modes

If an internal test mode (TEST_SC \neq 0x00) is activated, this is reported on bit TEST and visible in STA-TUS3_SC.

Status Registers

The following tables describe the status register mapping. For all status bits marked with $_{L}$, the relevant bits will be set in case of an error and maintained until the command **SCLEAR** is executed (see Table 94).

Safety Channel		
STATUS1_S	C Addr	: 0x70; bit 7:0
Bit	Name	Function
7	EB3 _L	MT interface error bit 3
6	EB2 _L	MT interface error bit 2
5	EB1 _L	MT interface error bit 1
4	EB0 _L	MT interface error bit 0
3	ESSIL	MT SSI protocol error
2	ERCL	RC error
1	ESTL	ST error (random)
0	EINT _L Converter code check error	
Note	L = latched information, cleared by command SCLEAR	
	Error indication logic: 1 = true, 0 = false	

Table 82: Status byte 1: Safety Channel

Safety Channel		
STATUS2_S	SC Addr	. 0x71; bit 7:0
Bit	Name	Function
7	EMINL	Minimum amplitude error
6	EMAXL	Maximum amplitude error
5	0	not used
4	EAMP24 _L	1024 sin/cos track amplifier error
3	EAMPRL	Random track amplifier error
2	0	not used
1	EPDNL	Power-down error VDDM2
0	ERL	Random logic error
Note	L = latched information, cleared by command SCLEAR	
	Error indication logic: 1 = true, 0 = false	

Table 83: Status byte 2: Safety Channel

Safety Channel		
STATUS3_S	C Addr	. 0x72; bit 7:0
Bit	Name	Function
7	NOEPR	No EEPROM
6	ENRPCFG	Register Protection Configuration
5	ENRPOFF	Register Protection Offset
4	ETEMPL	Temperature error
3	$WTEMP_L$	Temperature warning
2	ETSL TSLEEP value error	
1	ECRC CRC check error	
0	TEST	Test mode active
		(TEST_SC <i>≠</i> 0x00)
Note	L = latched information, cleared by command SCLEAR	
	Error indication logic: 1 = true, 0 = false	

Table 84: Status byte 3: Safety Channel

Safety Channel			
STATUS4_S	STATUS4_SC Addr. 0x74; bit 7:0		
Bit	Name	Function	
7	EMTSYNC _L	Internal MT Sync Error	
6	ESTSYNC _L	Internal ST Sync Error	
5	IFFOR	Interface forced to use BiSS protocol	
4	WFOR	Warning forced with command CMD_SC = FORCE_WRN	
3	EFOR	Error forced with command CMD_SC = FORCE_ERR	
2	EI2C _L	Communication error I2C	
1	ECRC_OFF	CRC check error offset area	
0	ECRC_CFG	CRC check error configuration area	
Note	L = latched information, cleared by command SCLEAR		
	Error indication logic: 1 = true, 0 = false		

Table 85: Status byte 4: Safety Channel

Safety Channel			
EMT bit ger	EMT bit generation: dependence on MODE_MT_SC		
Value	EMT reports		
No multitur	n		
0x6	0		
Internal rev	olution counter		
0xE	EPDN _L or ERL _L or ERC ¹		
0xF	ERC ¹		
MT interfac	e		
else	EB30 or ESSI or ERC ¹		
Note	¹ Latched or non-latched status information can be selected with ENESTL (see Table 88)		
	$_{\rm L}$ = latched information, cleared by command SCLEAR		
	Error indication logic: 1 = true, 0 = false		
	MODE_MT_SC see Table 58, page 53		

Table 86: EMT generation for nE/nW bit

BiSS, EXTSSI, SPI: Error and Warning bits nE/nW The status information setting the nE bit in the serial interface protocol can be selected using the EMASK_SC register.

Safety Channel				
EMASK_SC	MASK_SC Addr. 0x19; bit 7:0 RW			W
Bit	Name	Default	Masking	
7	EMTEMP	1	ETEMP	
6	EMERL	1	ERL	
5	0	0	-	
4	EMINT	1	EINT	
3	EMCRC	1	ECRC	
2	EMST	1	EST ¹	
1	EMMT	1	EMT (see Table 86)	
0	EMLED	1	EAMP24 or EMAX or EMIN	
Note	¹ Latched or non-latched status information can be selected with ENESTL (see Table 88)			
	Bit coding: 0 =	message disat	oled, 1 = message enabled	I

Rev C1, Page 64/73

The status information which is active at the current position data request and which is configured with EMASK_SC are used for the nE bit. A reset of the status information is not required.

i

An exception is the status of the Plausibility Check (EST and ERC). The used status information can be selected with ENESTL (see Table 88). With ENESTL = 1 the command **SCLEAR** is required to reset the nE bit.

Safety Channel		
ENESTL	Addr. 0x13; bit 0	
Value	Function	
0	The current, non-latched values of EST and ERC are used	
1	The latched values EST_L and ERC_L are used	

Table 88: Error Bit on Latched Status

For the nW bit in the BiSS, EXTSSI, and SPI protocol, the triggering status information can be selected using the WMASK_SC register.

Safety Channel			
WMASK_SC Addr. 0x1A; bit 7:0 F		:0 RW	
Bit	Name	Default	Masking
7	WMTEMP	1	WTEMPL
6	WMERL	1	ERL
5	0	0	-
4	WMINT	1	EINTL
3	WMCRC	1	ECRC
2	WMST	1	ESTL
1	WMMT	1	EMT _L (see Table 86)
0	WMLED	1	$EAMP24_L \text{ or } EMAX_L \text{ or } EMIN_L$
Note	L = latched inf	ormation, cleare	ed by command SCLEAR
	Encoding of b 0 = message	it 70: disabled, 1 = me	essage enabled

Table 89: Warning Masking

i i bit

For BiSS, EXTSSI, SPI: For the nW bit, the latched status information is used. If a latched status is causing the nW bit to be set, the command **SCLEAR** must be executed (see Table 94) to reset the nW bit.

Rev C1, Page 65/73

Pin NRES2

Safety Channel	
Pin NRES2	
State	Function
0	Power-off State, VDD2 <vth< td=""></vth<>
1	Power-on State, VDD2>Vth
Note	See Elec. Char. 401, 402

Table 90: NRES2 output during power-on

Power-on and power-off states can be observed at pin NRES2.

After power-on, the NRES2 pin can be used as an input pin to issue the **REBOOT** command. The time that the NRES2 pin must be pulled low for the reset command to be recognized internally is specified by Elec. Char. 106 and 107.

Rev C1, Page 66/73

COMMANDS

Depending on the data value written to the command registers, the execution of an implemented command is triggered. The following implemented commands can be used to check the status of the system and to set it back to an error-free state.

Control Channel

For the implemented commands of the Control Channel, register address 0x77 is used.

Control Channel		
CMD_CC	C Addr. 0x	k77; bit 7:0 W ¹
Code	Function	Description
0x10	REBOOT	Reboot iC-RZ Control Channel (new startup see chapter STARTUP PROCESS, page 29)
0x11	RESET	Reset digital part (new startup using internal config. data, see chapter STARTUP PROCESS)
0x20	SCLEAR	Reset all status bits in: - STATUS1_CC - STATUS2_CC - STATUS3_CC
0x21	FORCE_ERR	Force nE bit of serial interface to be set
0x22	UNFORCE_ERR	Release forced nE bit of serial interface
0x23	FORCE_WRN	Force nW bit of serial interface to be set
0x24	UNFORCE_WRN	Release forced nW bit of serial interface
0xA1	RPL_SET_RO	Set configuration register access to read only (see chapter REGISTER ACCESS, page 45)
0xA3	RPL_RESET	Remove write protection for register access (see chapter REGISTER ACCESS, page 45)
0xC0	UNFORCE_IF ²	Serial interface uses default protocol BiSS
0xC1	FORCE_BISS ²	Force the serial interface to BiSS protocol
0xE1	CHIP_REV	Returns the CHIP REVISION in the CMD_STAT_CC register
Note	¹ Read returns 0x0	0
	² No function	

Table 91: BiSS commands: Control Channel

The **RESET** command restarts the internal position data generation unit for the ST and MT data. No position data is available while the restart of the position data generation unit is in progress. In this case the output position data is set to 0 and the nE/nW bit is active = 0. The position data is available after a successful start up of the position data generation (see chapter STARTUP PROCESS).

REBOOT and RESET:

If no ST data can be obtained after restarting the position data generation, e.g. due to an illumination error, the output remains permanently in error state: *position data returns 0 and nE/nW bits are active*.

After executing the **CHIP_REV** command, the chip revision can be read from the register CMD_STAT_CC.

Control Channel	
CMD_STAT_CC	Addr. 0x76; bit 7:0
CMD_CC	Return value
CHIP_REV	CHIP REVISION (see Table 93)
others	0x00

Table 92: Command Status iC-RZ Control Channel

Control Channel		
CHIP REVISION		
Code	Chip revision	
0x05	iC-RZ2648 Y Control Channel	
0x06	iC-RZ2648 Y1 Control Channel	
0x07	iC-RZ2648 Y2 Control Channel	
0x15	iC-RZ2624 Y Control Channel	
0x16	iC-RZ2624 Y1 Control Channel	
0x17	iC-RZ2624 Y2 Control Channel	
0x25	iC-RZ4248 Y Control Channel	
0x26	iC-RZ4248 Y1 Control Channel	
0x27	iC-RZ4248 Y2 Control Channel	
0x35	iC-RZ4224 Y Control Channel	
0x36	iC-RZ4224 Y1 Control Channel	
0x37	iC-RZ4224 Y2 Control Channel	

Table 93: Chip Revision iC-RZ Control Channel

Rev C1, Page 67/73

Safety Channel

For the implemented commands of the Safety Channel, register address 0x77 is used.

Safety Channel		
CMD_SC	Addr. 0x	77; bit 7:0 W ¹
Code	Function	Description
0x10	REBOOT	Reboot iC-RZ Safety Channel (new startup see chapter STARTUP PROCESS, page 29)
0x11	RESET	Reset digital part (new startup using internal config. data, see chapter STARTUP PROCESS)
0x20	SCLEAR	Reset all status bits in: - STATUS1_SC - STATUS2_SC - STATUS3_SC - STATUS4_SC
0x21	FORCE_ERR	Force nE bit of serial interface to be set
0x22	UNFORCE_ERR	Release forced nE bit of serial interface
0x23	FORCE_WRN	Force nW bit of serial interface to be set
0x24	UNFORCE_WRN	Release forced nW bit of serial interface
0xC0	UNFORCE_IF	Serial interface uses default protocol configured with IF_MODE
0xC1	FORCE_BISS	Force the serial interface to BiSS protocol
0xE1	CHIP_REV	Returns the CHIP REVISION in the CMD_STAT_SC register
Note	¹ Read returns 0x0	0

Table 94: BiSS/SPI commands: Safety Channel

The **RESET** command restarts the internal position data generation unit for the ST and MT data. No position data is available while the restart of the position data generation unit is in progress. In this case the output position data is set to 0 and the nE/nW bit is active = 0. The position data is available after a successful startup of the position data generation (see chapter STARTUP PROCESS).

REBOOT and RESET:

If no ST data can be obtained after restarting the position data generation, e.g. due to an illumination error, the output remains permanently in error state: *position data returns 0 and nE/nW bits are active*.

After executing the **CHIP_REV** command, the chip revision can be read from the register CMD_STAT_SC.

Safety Channel	
CMD_STAT_SC	Addr. 0x76; bit 7:0
CMD_SC	Return value
CHIP_REV	CHIP REVISION (see Table 96)
others	0x00

Table 95: Command Status iC-RZ Safety Channel

Safety Channel			
CHIP REVI	CHIP REVISION		
Code	Chip revision		
0x0D	iC-RZ2648 Y Safety Channel		
0x0E	iC-RZ2648 Y1 Safety Channel		
0x0F	iC-RZ2648 Y2 Safety Channel		
0x1D	iC-RZ2624 Y Safety Channel		
0x1E	iC-RZ2624 Y1 Safety Channel		
0x1F	iC-RZ2624 Y2 Safety Channel		
0x2D	iC-RZ4248 Y Safety Channel		
0x2E	iC-RZ4248 Y1 Safety Channel		
0x2F	iC-RZ4248 Y2 Safety Channel		
0x3D	iC-RZ4224 Y Safety Channel		
0x3E	iC-RZ4224 Y1 Safety Channel		
0x3F	iC-RZ4224 Y2 Safety Channel		

Table 96: Chip Revision iC-RZ Safety Channel

ALIGNMENT

Figure 44: Definition of displacement

For alignment of the sensor to the code disc, internal photodiode signals can be output to pins. To activate the alignment mode the register address 0x30 is used. The definition of radial and tangential displacement is shown in Figure 44.

Control Channel

The internal signals of the Control Channel can only be used to align tangential displacement.

Following diagram shows the signals for an ideal alignment.

Figure 45: Signals for ideal tangential alignment

The pin assignment during alignment modes is shown in Table 97.

Control Channel								
Pin assigr	Pin assignment							
TEST_CC	Description	MO1	MI1	CFG10	CFG11	SLO1		
0x00	Normal Mode							
0x03	Sin/cos signals of incremental track with 1024 CPR	PS*	NS*	NC*	PC*			
0x07	PRC track Comparator Signals	RANVx		(SEL0***)	RANNx**	RSYNCV		
	(tangential alignment)							
	* Pins must be high impedance for measurement (Internal output impedance $R_{out} \approx 2.5 \text{ k}\Omega$)							
	** CFG11 must be high impedance for measurement of RANNx (see Elec. Char. 001-004)							
	*** SEL0= 0: SLO1= SLO, SEL0= 1: SLO1= RSYNCV							

RANNx

Table 97: Test Mode Selection (CC) and Signal Assignment

In the mode *PRC track Comparator Signals* (TEST_CC = 0x07), the random track test signal to be output is selected using register SELRND_CC.

Control Channel					
SELRND_C	C Addr. 0x31; bit 3:0				
Code	Function				
0x00	RANV0 / RANN0				
0x09	RANV9 / RANN9				
others	not used				

Table 98: Random Track Selection (CC)

Rev C1, Page 69/73

Safety Channel

The internal signals of the Safety Channel can be used for tangential and radial alignment.

The pin assignment during alignment modes is shown in Table 99. The signals for an ideal tangential alignment are shown in Figure 45.

Safety Channel								
Pin assigr	Pin assignment							
TEST_SC	Description	MO2	MI2	SCL2	SDA2	NCS	SDI2	SDO2
0x00	Normal Mode							
0x03	Sin/cos signals of incremental track with 1024 CPR	NC*	PC*			NS*	(SEL0**)	PS*
0x07	PRC track Comparator Signals (tangential alignment)	RSYNCV		RANVx	RANNx			
0x19	Alignment Mode Radial	DJL*	-			-	(SEL0**)	DJH*
	* Pins must be high impedance for measurement (Internal output impedance $R_{out} \approx 2.5 \text{ k}\Omega$) **SEL0=0 \rightarrow SDO2=SDO2, SEL0=1 \rightarrow Test Signal							

Table 99: Test Mode Selection (SC) and Signal Assignment

In the mode *PRC track Comparator Signals* (TEST_SC=0x07), the random track test signal to be output is selected using register SELRND_SC.

Safety Channel					
SELRND_S	C Addr. 0x31; bit 3:0				
Code	Function				
0x00	RANV0 / RANN0				
0x09	RANV9 / RANN9				
others	not used				

Table 100: Random Track Selection (SC)

An alignment of the sensor to the code disc in radial direction can be done using test mode *Alignment Mode Radial* (TEST_SC = 0x19) of the Safety Channel. In this test mode the signals of the alignment diodes DJH, DJL (see Figure 46) are output at pins MO2 and SDO2. The radial track position is exact when the voltages of the two pins are more or less equal over one revolution.

Figure 46: Alignment diodes DJH, DJL for radial alignment

Rev C1, Page 70/73

DESIGN REVIEW: Notes On Chip Functions

iC-RZ Y1		
No.	Function, parameter/code	Description and application notes
1	5-bit interpolator: Elec. Char. 806	If the 1024 sin/cos track delivers a signal amplitude of less than 300 mV at startup in standstill (while turning on the LED), this can lead to an invalid converter code and a set status bit EINT. To achieve a signal amplitude of more than 300 mV at startup, using iC-RZ's internal LED control (output LEDC) is recommended.

Table 101: Notes on chip functions regarding iC-RZ, chip revision Y1

iC-RZ Y2					
No.	Function, parameter/code	Description and application notes			
		None at time of release.			

Table 102: Notes on chip functions regarding iC-RZ, chip revision Y2

Rev C1, Page 71/73

REVISION HISTORY

Rel.	Rel. Date ²	Chapter	Modification	Page
A1	2019-12-09	All	Initial Release	all
Rel.	Rel. Date ²	Chapter	Modification	Page
B1	2020-11-12	DESCRIPTION	Note box added	2
		PACKAGING INFORMATION	Package dimension figures updated for footnote (pages 6, 8), AOI criteria and figures added (pages 7, 9)	6ff
		ABSOLUTE MAXIMUM RATINGS	Item G006: correction to VDDA+0.3V	10
		ELECTRICAL CHARACTERISTICS	Item 106: correction of condition to EAMPA Item E02: condition and limit added Item 107, K01, L06, O07: added as new items Item O06: correction of formula under conditions	11ff
		OPERATING REQUIREM.: BISS	Update of BiSS and SSI timing specifications, Figure 2 added	16
		OPERATING REQUIREM.: SPI	Items I112, I113, I115: update of condition Update of listing order	18
		OPERATING REQ. MT Interface	Update of listing order	19
		CONFIG. PARAMETERS	Section added, parameter name changes	22
		PHOTODIODES	Update of description	27
		STARTUP PROCESS	Text corrections, update of Figures 14, 15, 16, 17 Table 7: footnote added Info box added (page 29) Configuration of Control Channel: description added on pin configuration	29ff
		SERIAL I/O INTERFACES	Info text updated, second info on BiSS chain added	35
		BISS INTERFACE	Tables 18 and 19 added, info box added (page 37)	36ff
		SPI INTERFACE (SC)	Table 28: correction of note for 0x5, Table 29: footnote added, info box added (page 44)	39ff
		SYNCHRONIZATION LOGIC	Description added on multiturn synchronization	48
		MULTITURN FUNCTIONS	Tables 57, 61: notes moved into table Tables 56, 60, 62: notes added Internal Rev. Counter (battery powered): section updated, info and warning notes added on LED1/2 wiring Tables 64, 65: change of title	50ff
		COMMANDS	Update of warning text for CC and SC	66, 67
		ALIGNMENT	Name/description change for mode 0x07	68, 69
		DESIGN REVIEW: Notes On Chip Functions	Note 1 on RZ Y1 added	70

Rel.	Rel. Date ²	Chapter	Modification	Page
C1	2024-08-21	All	Corrected an offset of the table numbering.	all
		FEATURES	Updated feature list.	1
		PACKAGE DIMENSIONS	Updated website link to Optical Selection Criteria.	7, 9
		ELECTRICAL CHARACTERISTICS	Item 014: Removed. Item 015: Removed. Item K01: Removed. Item O05: Changed max. value. Item V08: Updated values.	11ff
		BiSS, SSI Interface	Item I016: Updated.	16
		CONFIGURATION PARAMETERS	Corrected SBL_MT_SC and EBL_MT_SC.	22
		STARTUP PROCESS	Added note for SDO2 state in Table 8.	29
		BISS INTERFACE	Table 19: Broadcast 10 "bus coupler bypass" \to "reserved". Removed slave ID. Removed website link for BiSS Interface.	36
		SPI INTERFACE (SC)	Added note on the Write Register (cont.) opcode and EEPROM access.	42
		REGISTER ACCESS	Reorganized chapter, optimized text.	45ff
		MULTITURN FUNCTIONS	Table 55: Removed blue marking for value 00.Table 53: Corrected representation of values \rightarrow < 180° = 0511; \geq 180° = 5121023Removed subchapter "Notice on Battery Usage".Added note on mandatory external circuitry and Application Note AN6.Optimized wording.	50ff
		DIAGNOSTICS CC	Amplifier Limit Monitor: Updated description.	59
		DIAGNOSTICS SC	Amplifier Limit Monitor: Updated description. Table 89: Removed footnote L (latched) from ECRC.	62f
		COMMANDS	Table 93 and Table 96: Added iC-RZ4224 Y2 and iC-RZ4248 Y2 to CHIP_REVISION.	66f

Rev C1, Page 72/73

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).
iC-RZ Series OPTICAL TWIN-SCAN ENCODER IC WITH SAFETY CHANNEL

Rev C1, Page 73/73

ORDERING INFORMATION

Туре	Package	Order Designation
iC-RZ2624	38-pin optoQFN, 7 mm x 5 mm, thickness 1 mm RoHS compliant	iC-RZ2624 oQFN38-7x5
iC-RZ2648	38-pin optoQFN, 7 mm x 5 mm, thickness 1 mm RoHS compliant	iC-RZ2648 oQFN38-7x5
iC-RZ4224	38-pin optoQFN, 7 mm x 5 mm, thickness 1 mm RoHS compliant	iC-RZ4224 oQFN38-7x5
iC-RZ4248	38-pin optoQFN, 7 mm x 5 mm, thickness 1 mm RoHS compliant	iC-RZ4248 oQFN38-7x5
Code Disc	Glass disc 1.0 mm, suitable for iC-RZ2624	RZ01S 26-1024
Code Disc	Glass disc 1.0 mm, suitable for iC-RZ2648	RZ02S 26-2048
Code Disc	Glass disc 1.0 mm, suitable for iC-RZ4224	RZ05S 42-1024
Code Disc	Glass disc 1.0 mm, suitable for iC-RZ4248	RZ06S 42-2048

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH Am Kuemmerling 18 D-55294 Bodenheim GERMANY Tel.: +49 (0) 61 35 - 92 92 - 0 Fax: +49 (0) 61 35 - 92 92 - 192 Web: https://www.ichaus.com E-Mail: sales@ichaus.com

Appointed local distributors: https://www.ichaus.com/sales_partners