iC-PNE Series preliminary OCTAL NONIUS PHASED ARRAY ENCODERS

Rev A4, Page 1/10

FEATURES

- Compact, high resolution absolute encoder ICs for up to 25 bit singleturn resolution (with nonius interpolation)
- For code discs of \varnothing 26 mm, \varnothing 33 mm, \varnothing 39 mm
- Monolithic 3-channel HD Phased Array with excellent signal matching
- Moderate track pitch for reduced cross talk
- Ultra low dark currents for operation up to high temperature
- Low noise amplifiers with high transimpedance gain
- Enhanced EMI tolerance by low impedance differential, short-circuit-proof, analog sine/cosine outputs
- Embedded octal sector detection by 4 digital tracks from 1.8 V upwards (4-bit Gray code)
- ♦ Low power consumption from single 4.1 to 5.5 V supply
- ♦ Operational temperature range of -40 °C to +125 °C
- Space saving optoQFN package (RoHS compliant)
- Evaluation kits with LED and code disc available for sampling

APPLICATIONS

AC servo feedback

Absolute position encoders

32-pin optoQFN 5 mm x 5 mm x 0.9 mm RoHS compliant

iC-PNE Series preliminary OCTAL NONIUS PHASED ARRAY ENCODERS

Rev A4, Page 2/10

DESCRIPTION

The iC-PNE device series represents advanced optical encoder ICs featuring monolithically integrated photosensors arranged as an *HD Phased Array*, providing excellent signal fidelity at relaxed alignment tolerances.

Its precision sine/cosine output signals allow a highresolution interpolation by subsequent devices: a singleturn position can be resolved with up to 25 bit utilizing the 3-channel nonius interpolation of iC-MNF. For this, iC-MNF employs its MT interface to read the revolution count as well as the sector information prepared by an external logic or MCU.

The typical application of iC-PNE devices are absolute position encoders for motion control and drive applications.

iC-PNE scans 8 tracks in total, whereof 3 analog tracks feature phased-arrays of multiple photosensors, each per track, generating positive and negative going sine signals, as well as positive and negative going cosine signals. An excellent matching and common mode behavior of the differential signal paths is obtained by a paired amplifier design. Due to a typical transimpedance gain of $1 \text{ M}\Omega$, the output signal level reaches a few hundred millivolts at low light conditions already.

Additionally, 5 digital tracks are implemented for absolute position scanning, providing sector detection for repeated Nonius scales. For example, the standard code disc for iC-PNE repeats the Nonius scale after 45 degrees, i.e. 8x per revolution, and provides a 4-bit Gray code for differentiation.

Sector detection can be used already at low supply voltages from 1.8 V up; the power consumption is low unless other sections are biased. Full operation requires a single-sided supply of 4.1 V to 5.5 V.

iC-PNE2648 EncoderBlue®

Optical radius 11.0 mm, code disc \varnothing 26.0 mm; (8x 255/256/240 CPR)

iC-PNE3348 EncoderBlue®

Optical radius 14.5 mm, code disc \oslash 33.2 mm; (8x 255/256/240 CPR)

iC-PNE3948

Optical radius 17.5 mm, code disc \emptyset 39.2 mm; (8x 255/256/240 CPR)

EncoderBlue[®] devices feature *blue-enhanced* photosensors requiring the application of a LED with short wavelength of about 460 nm, preferably iC-TL46. An outstanding signal performance is the key benefit due to the improvements of optical contrast.

EncoderBlue is a trademark of iC-Haus GmbH.

General notice on materials under excessive conditions Epoxy resins (such as solder resists, IC package and injection molding materials, as well as adhesives) may show discoloration, yellowing, and surface changes in general when exposed longterm to high temperatures, humidity, irradiation, or due to thermal treatments for soldering and other manufacturing processes.

Equally, standard molding materials used for IC packages can show visible changes induced by irradiation, among others when exposed to light of shorter wavelengths, blue light for instance. Such surface effects caused by visible or IR LED light are rated to be of cosmetic nature, without influence to the chip's function, its specifications and reliability.

Note that any other material used in the system (e.g. varnish, glue, code disc) should also be verified for irradiation effects.

preliminary **iC-PNE** Series OCTAL NONIUS PHASED ARRAY ENCODERS

Rev A4, Page 3/10

aus

PACKAGING INFORMATION

SENSOR LAYOUT

Chip layout example. Grey sections represent sensor layout areas; fill factors vary.

AOI CRITERIA

<die mark=""> iC PNE2612 iC PNE2648 iC PNE3312 iC PNE3348</die>	<section></section>	<area class=""/> ¹
IC PNE3912 IC PNE3948		
1011120010	1, 3	A25
	2, 4	A16
	5	A40

¹ Selection class for the optical inspection of detector areas. Refer to Optical Selection Criteria for further description.

PIN CONFIGURATION oQFN32-5x5 (5 mm x 5 mm)

PIN FUNCTIONS

No.

- Name Function 1 VCC +4.1..5.5 V Supply Voltage 2 VREF Reference Voltage Output 3 PS N N-Track Sine + 4 NS N N-Track Sine -5 PS_M M-Track Sine + 6 NS M M-Track Sine -7 PS S S-Track Sine + 8 NS S S-Track Sine -9 MTD Digital Output D 10 ITR² Test Input 11..14 n.c.¹ 15 IT² Test Input Digital Output C 16 MTC 17 NC S S-Track Cosine -18 PC_S S-Track Cosine + 19 NC M M-Track Cosine -20 PC M M-Track Cosine + 21 NC N N-Track Cosine -22 PC_N N-Track Cosine + **Digital Output B** 23 MTB 24 GND Ground
 - 25 MTA Digital Output A
- 26..31 n.c.¹
 - 32 VB +1.8..5.5 V Digital Supply Voltage BP³ Backside paddle

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes);

Pin numbers marked n.c. are not connected.

² Pin can be left open or connected to ground.

³ Connecting the backside paddle is recommended by a single link to GND. A current flow across the paddle is not permissible.

iC-PNE Series

OCTAL NONIUS PHASED ARRAY ENCODERS

Rev A4, Page 4/10

Haus

preliminary

PACKAGE DIMENSIONS

All dimensions given in mm. General Tolerances of form and position according to JEDEC MO-220. Positional tolerance of sensor pattern: $\pm 70\mu m$ / $\pm 1^{\circ}$ (with respect to center of backside pad). G4: radius of chip center (refer to the relevant encoder disc and code description). Maximum molding excess $\pm 20\mu m$ / $-75\mu m$ versus surface of glass. Small pits in the mold surface, which may occasionally appear due to the manufacturing process, are cosmetic in nature and do not affect reliability. $dra_oqfn32-5x5-4_pnexxxx_0_pack_1, 10:1$

Rev A4, Page 5/10

FAHaus

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions			Unit
No.	-			Min.	Max.	
G001	VCC, VB	Voltage at VCC, VB		-0.3	6	V
G002	I(VCC), I(VB)	Current in VCC, VB		-20	20	mA
G003	V()	Pin Voltage MTA, MTB, MTC, MTD all other signal outputs		-0.3 -0.3	VB + 0.3 VCC + 0.3	V V
G004	l()	Pin Current, all signal outputs		-20	20	mA
G005	Vd()	ESD Susceptibility, all pins	HBM, 100 pF discharged through $1.5 \text{ k}\Omega$ CDM (JEDEC Standard No. 22-C101F)		2000 750	V V
G006	Tj	Junction Temperature		-40	150	°C
G007	Ts	Chip Storage Temperature		-40	150	°C

THERMAL DATA

Operating conditions: VCC = 4.1...5.5 V

Item	Symbol	Parameter	Conditions				Unit
No.	-			Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	package oQFN32-5x5	-40		125	°C
T02	Ts	Storage Temperature Range	package oQFN32-5x5	-40		125	°C
Т03	Tpk	Soldering Peak Temperature	package oQFN32-5x5; tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering MSL 5A (max. floor life 24 h at 30 °C and 60 % RH); Refer to Handling and Soldering Conditions for details.			245 230	℃ ℃

iC-PNE Series preliminary Contal Nonius Phased Array Encoders

Rev A4, Page 6/10

ELECTRICAL CHARACTERISTICS

Operat	Operating conditions: VCC = 4.15.5 V, VB = 0 V, Tj = -40125 °C, unless otherwise stated.							
ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
Total D	Device	^ 	·					
001	VCC	Permissible VCC Supply Voltage	regular operation	4.1		5.5	V	
002	I(VCC)	VCC Supply Current	no load, Vout() < Vout()mx		13	20	mA	
Photo	sensors	1	1			,		
101	λ ar	Spectral Application Range	$Se(\lambda ar) = 0.25 \times S(\lambda pk)$	400		950	nm	
102	λpk	Peak Sensitivity Wavelength			680		nm	
104	S(λ)	Spectral Sensitivity	$\lambda_{\text{LED}} = 460 \text{ nm}$ $\lambda_{\text{LED}} = 740 \text{ nm}$ $\lambda_{\text{LED}} = 850 \text{ nm}$		0.3 0.5 0.35		A/W A/W A/W	
Photo	current Am	plifiers						
201	lph()	Permissible Photocurrent Operating Range		0		1120	nA	
202	η()r	Photo Sensitivity (light-to-voltage conversion ratio)	λ_{LED} = 460 nm with EncoderBlue [®] λ_{LED} = 740 nm λ_{LED} = 850 nm		0.3 0.5 0.35		V/μW V/μW V/μW	
203	Z()	Equivalent Transimpedance Gain	Z = Vout() / Iph()	0.7	1.0	1.4	MΩ	
204	TCz	Temperature Coefficient of Transimpedance Gain			-0.12		%/°C	
205	⊿Z()pn	Transimpedance Gain Matching	inside channel: P vs. corresponding N output, or sine vs. cosine output	-3		3	%	
206	⊿Vout()pn	Signal Matching	signal average to signal average of Master vs. Nonius, Master vs. Segment, Nonius vs. Segment channel	-40		40	mV	
207	⊿Vout()pn	Dark Signal Matching	no illumination; inside channel, any output vs. any output Master channel outputs vs. VREF	-2.5 -2.5		2.5 2.5	mV mV	
208	fc()hi	Cut-off Frequency (-3 dB)			400		kHz	
209	VNoise()	RMS Output Noise	illuminated to 500 mV signal level above dark level, 500 kHz band width		0.5		mV	
Signal	Outputs	1	1			1	u	
301	Vout()mx	Permissible Max. Output Voltage	refer to Figure 1, VCC > 4.3 V VCC > 4.1 V	2.0 1.8			V V	
302	lout()mx	Permissible Max. Load Current		-100		250	μA	
303	Vout()d	Dark Signal Level	no illumination, I() \leq 50 μ A	600	900	1150	mV	
304	lsc()hi	Short-Circuit Current hi	load current to ground	100	420	1300	μA	
305	lsc()lo	Short-Circuit Current lo	load current to IC	250	480	700	μA	
306	ton()	Power-On Settling Time	$VCC = 0 V \rightarrow 5 V$			100	μs	
Refere	ence Output	VREF	1					
401	VREF	VREF Reference Voltage Output	I(VREF) = -100+300 μA	600	900	1150	mV	
402	TC()	VREF Temperature Coefficient			-1.3		mV/°C	
404	lsc()hi	VREF Short-Circuit Current hi	load current to ground	200	420	2000	μA	
405	lsc()lo	VREF Short-Circuit Current lo	load current to IC	0.5	4.5	10	mA	
Digital	Outputs M	TA, MTB, MTC, MTD and Supply	VB		1	1	<u>µ</u>	
601	VB	Permissible VB Supply Voltage		1.8		5.5	V	
602	I(VB)	Supply Current in VB	MTAMTD not loaded; VB = 1.83.6 V VB > 3.6 V			300 350	μA μA	
603	ton(VB)	VB Power-Up Settling Time for MTA, MTB, MTC, MTD Operation	VB = 0 V \rightarrow 1.8 V, without illumination; refer to Figure 2			10	μs	
604	Vs()hi	Saturation Voltage hi at MTA, MTB, MTC, MTD	Vs()hi = VB - V(), I() = -130 μA			0.4	V	
605	Vs()lo	Saturation Voltage lo at MTA, MTB, MTC, MTD	I() = 200 μA			0.4	V	

iC-PNE Series preliminary OCTAL NONIUS PHASED ARRAY ENCODERS

Rev A4, Page 7/10

laus

ELECTRICAL CHARACTERISTICS

ltem	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
606	ton_LED	Recommended Illumination Time	Gray-code scanning by DA to DD sensors: lph(DA to DD) = 100260 nA, lph(DR) = 180 nA See Figure 3 and note on verification.	3			μs
607	tp1()	Output Validity at MTA, MTB, MTC, MTD	see Figure 3; output stable for readout after LED on			3	μs
608	tp2()	Output Validity at MTA, MTB, MTC, MTD	see Figure 3; output stable for readout after LED off	0.2			μs
610	lph()ofs	Photosensor Offset Current	I(DA, DB, DC, DD) vs. I(DR)	-5		+5	nA
611	lph()hys	Equivalent Photosensor Input Hysteresis	difference of hi $\leftarrow \rightarrow$ lo switching points at MTA, MTB, MTC, MTD	0.3		8	nA
Device	e Specific: i	C-PNE2648					
V201	Aph()	Radiant Sensitive Area	sensors of N/M/S tracks sensors of MTA to MTD tracks		0.063 0.021		mm ² mm ²
V202	E()mxr	Irradiance For Max. Signal Level	λ_{LED} = 460 nm, Vout() not saturated		1.6		mW/ cm ²
Device	e Specific: i	C-PNE3348					
V401	Aph()	Radiant Sensitive Area	sensors of N/M/S tracks sensors of MTA to MTD tracks		0.046 0.015		mm ² mm ²
V402	E()mxr	Irradiance For Max. Signal Level	λ_{LED} = 460 nm, Vout() not saturated		2.2		mW/ cm ²
Device	e Specific: i	C-PNE3948					
V601	Aph()	Radiant Sensitive Area	sensors of N/M/S tracks sensors of MTA to MTD tracks		0.060 0.020		mm ² mm ²
V602	E()mxr	Irradiance For Max. Signal Level	λ_{LED} = 740 nm, Vout() not saturated		1.5		mW/ cm ²

Figure 1: Permissible maximum output voltage range and example of typical output voltage.

Note: With a state of the art optical path and assembly of the encoder, the operating range for the signal output at MTA to MTD may be extended to 1/3 of the nominal illumination level (i.e. LED current at 33 %).

iC-PNE Series preliminary OCTAL NONIUS PHASED ARRAY ENCODERS

laus

APPLICATION CIRCUITS

For examples of application circuits, please refer to the separately available application note **AN2** for the iC-PN/PNH/PNE series.

DEVICE OVERVIEW

Device	CPR ¹	Code Disc		OR ²	Code Radius	Resolution ³	Error Tol. ⁴
	Master	P/O Code	Material	[mm]	begin / end [mm]	[bit]	[e°]
Ø 26 mm		(disc diameter 26.0) mm, bore	e hole 11	.6 mm)		
iC-PNE2648 ⁵	8x 256	PNE02S 26-2048	glass	10.905	9.4 / 12.4	25	\pm 9.8
Ø 33 mm		(disc diameter 33.2	2 mm, bore	e hole 18	.0 mm)		
iC-PNE3348 ⁵	8x 256	PNE04S 33-2048	glass	14.5	13.0 / 16.0	25	\pm 9.8
Ø 39 mm	Ø 39 mm (disc diameter 39.0 mm, bore hole 18.0 mm)						
iC-PNE3948	8x256	PNE6S 39-2048	glass	17.5	16.0 / 19.0	25	± 9.8

¹ Signal cycles per revolution of master track.

² Optical center radius.

³ Angle resolution per single turn; interpolated by iC-MNF with 14 bit resolution.

⁴ Permissible maximum track-to-track signal phase deviation in electrical degree per master signal cycle.

⁵ EncoderBlue[®]. EncoderBlue is a trademark of iC-Haus GmbH.

Device availability on request.

Table 1: Device overview

DESIGN REVIEW: Notes On Chip Functions

iC-PNExxxx 01, 11, Z					
No.	Function, Parameter/Code	Description and Application Hints			
-		None at time of release.			

Table 2: Notes on chip functions regarding iC-PNE chip releases 01, 11, Z.

iC-PNE Series preliminary OCTAL NONIUS PHASED ARRAY ENCODERS

Haus

REVISION HISTORY

Rel.	Rel. Date ¹	Chapter	Modification	Page
A1	2022-11-14		Initial release.	

Rel.	Rel. Date ¹	Chapter	Modification	Page
A2	2023-09-12	ELECTRICAL CHARACTERISTICS	Item 402: typ. value Item 608: minimum limit	6
		APPLICATION CIRCUITS	Figure 4 added	8

Rel.	Rel. Date ¹	Chapter	Modification	Page
A3	2023-11-28	APPLICATION CIRCUITS	Figure 4 updated	8

Rel.	Rel. Date ¹	Chapter	Modification	Page
A4	2024-08-27		Obsolete designs removed	2, 7, 9, 10
		APPLICATION CIRCUITS	AN2 introduced, Figures 4+5 removed	8

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (*Safety-Critical Applications*) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

iC-PNE Series

OCTAL NONIUS PHASED ARRAY ENCODERS

Haus

preliminary

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-PNExxxx	32-pin optoQFN, 5 mm x 5 mm, thickness 0.9 mm RoHS compliant	xxxx = device version	iC-PNExxxx oQFN32-5x5
Code Disc	Glass disc 1.0 mm	nn = design number aa = diameter cccccc = master track CPR	PNEnnS aa-cccc
		for iC-PNE2648 (8x 256 CPR) for iC-PNE3348 (8x 256 CPR) for iC-PNE3948 (8x 256 CPR)	PNE02S 26-2048 PNE04S 33-2048 PNE06S 39-2048
Evaluation Kit	Kit with Scanner Module ICnnn (61 mm x 64 mm), LED Module IC274 and Code Disc	xxxx = device version (availability on request)	iC-PNExxxx EVAL PNE1M
Adapter Board	Adapter PCB, connects ICnnn to MNF1D (xx mm x yy mm)		iC544 EVAL IC544

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH	Tel.: +49 (0) 61 35 - 92 92 - 0
Am Kuemmerling 18	Fax: +49 (0) 61 35 - 92 92 - 192
D-55294 Bodenheim	Web: https://www.ichaus.com
GERMANY	E-Mail: sales@ichaus.com

Appointed local distributors: https://www.ichaus.com/sales_partners