13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 1/32

FEATURES

- ♦ Resolution of up to 8,192 angle steps per sine period
- ♦ Binary and decimal resolution settings, e.g. 500, 512, 1000, 1024; programmable angle hysteresis
- Count-safe vector follower principle, real-time system with 70 MHz sampling rate
- ♦ Conversion time of just 250 ns including amplifier settling
- ♦ Direct sensor connection; selectable input gain
- ♦ Input frequency of up to 250 kHz
- ♦ Signal conditioning for offset, amplitude and phase
- ♦ A/B quadrature signals of up to 3.75 MHz with adjustable minimum transition distance
- ♦ Zero signal processing, adjustable in index position and width
- ♦ Absolute angle output via fast serial interface (BiSS, SSI)
- ♦ Permanent bidirectional memory access to parameters and OEM data by BiSS C
- ♦ Period counting with up to 24 bits
- ♦ Error monitoring of frequency, amplitude and configuration
- ♦ Device setup from serial EEPROM or using BiSS
- ♦ ESD protection and TTL-/CMOS-compatible outputs

APPLICATIONS

- ♦ Interpolator IC for angle resolution from sine/cosine sensor signals
- Optical encoders
- MR sensor systems

PACKAGES

TSSOP20 RoHS compliant

BLOCK DIAGRAM PSIN +) ∄ +)-| INCREMENTAL OUTPUT NSIN INPUT SIN PCOS \oplus SLO + SLI Ì I/O INTERFACE -(+)-SDA NCOS INPUT COS Sin/D CONVERSION PZERO SCL NZERO E2PROM iC-NQC PERIOD COUNTER INPUT ZERO NERR VREF CONTROL LOGIC RAM

GNDA

GND

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 2/32

DESCRIPTION

iC-NQC is a monolithic A/D converter which, by applying a count-safe vector follower principle, converts sine/cosine sensor signals with a selectable resolution and hysteresis into angle position data.

This absolute value is output via a bidirectional, synchronous-serial I/O interface in BiSS C protocol and trails a master clock rate of up to 10 Mbit/s. Alternatively, this value can be output so that it is compatible with SSI in Gray or binary code, with or without error bits. The device also supports double transmission in SSI ring mode.

Signal periods are logged quickly by a 24-bit period counter that can supplement the output data with an upstream multiturn position value.

At the same time any changes in angle are converted into incremental A QUAD B signals. Here, the minimum transition distance can be stipulated and adapted to suit the system on hand (cable length, external counter). A synchronized zero index Z is generated if enabled by PZERO and NZERO.

The front-end amplifiers are configured as instrumentation amplifiers, permitting sensor bridges to be directly connected without the need for external resistors. Various programmable D/A converters are available for the conditioning of sine/cosine sensor signals with regard to offset, amplitude ratio and phase errors (offset compensation by 8-bit DAC, gain ratio by 5-bit DAC, phase compensation by 6-bit DAC).

The front-end gain can be set in stages graded to suit all common complementary sensor signals of approximately 20 mVpp to 1.5 Vpp and also non-complementary sensor signals of 40 mVpp to 3 Vpp, respectively.

The device can be configured using two bidirectional interfaces, the EEPROM interface from a serial EEP-ROM with I²C interface, or the I/O interface in BiSS C protocol. Free storage space on the EEPROM can be accessed via BiSS for the storage of additional data.

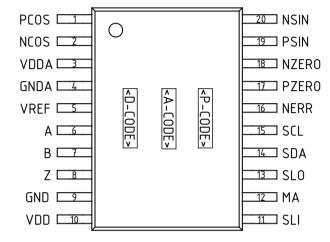
After a low voltage reset, iC-NQC reads in the configuration data including the check sum (CRC) from the EEPROM and repeats the process if a CRC error is detected.

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 3/32

CONTENTS

PACKAGING INFORMATION	4	I/O INTERFACE: BISS C PROTOCOL	20
PIN CONFIGURATION		Interface Parameters With BiSS C Protocol .	20
TSSOP20 4.4 mm, lead pitch 0.65 mm .	4	Example of BiSS Data Output	21
PACKAGE DIMENSIONS	5	Register Communication	21
ABSOLUTE MAXIMUM RATINGS	6	Internal Reset Function	21
ADOCEOTE MAXIMOM NATINGO	J	Short BiSS Timeout	21
THERMAL DATA	6		
=	_	I/O INTERFACE: SSI Protocol	23
ELECTRICAL CHARACTERISTICS CHARACTERISTICS: Diagrams	7 9	Examples of SSI Data Output	24
OPERATING REQUIREMENTS	10	EEPROM INTERFACE	25
I/O Interface	10	Example of CRC Calculation Routine	25
PARAMETER and REGISTER	11	STARTUP BEHAVIOR	26
		Startup With A Configured EEPROM	26
SIGNAL CONDITIONING	12	Startup Without An EEPROM	26
CONVERTER FUNCTIONS	13	Initialization After Configuration Failure	26
MAXIMUM POSSIBLE CONVERTER		APPLICATION NOTES	28
FREQUENCY	14	Principle Input Circuits	28
Serial Data Output	14	Input Circuit for Sine Encoders (1 Vpp)	28
Incremental Output to A, B and Z	15	Basic Circuit for MR Sensors	29
INCREMENTAL SIGNALS	16	EVALUATION BOARD	29
SIGNAL MONITORING and ERROR MESSAGES	18	DESIGN REVIEW: Function Notes	30
TEST FUNCTIONS	19	REVISION HISTORY	31


13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 4/32

PACKAGING INFORMATION TSSOP20 (according to JEDEC Standard)

PIN CONFIGURATION TSSOP20 4.4 mm, lead pitch 0.65 mm

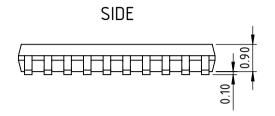
PIN FUNCTIONS Nama

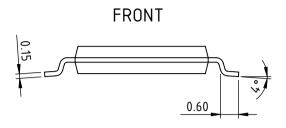
No.	Name	Function
1	PCOS	Input Cosine +
2	NCOS	Input Cosine -
3	VDDA 1	+5 V Supply Voltage (analog)
4	GNDA 1	Ground (analog)
5	VREF	Reference Voltage Output
6	Α	Incremental Output A
		Analog signal COS+ (TMA mode)
		PWM signal for Offset Sine (calib.)
7	В	Incremental Output B
		Analog signal COS- (TMA mode)
		PWM signal for Offset Cosine (calib.)
8	Z	Incremental Output Z
		PWM signal for Phase/Ratio (calib.)
_	GND	Ground
	VDD	+5 V Supply Voltage (digital)
	SLI ²	I/O Interface, data input
	MA	I/O Interface, clock line
	SLO	I/O Interface, data output
14	SDA	EEPROM interface, data line
	0	Analog signal SIN+ (TMA mode)
15	SCL ³	EEPROM interface, clock line
		Analog signal SIN- (TMA mode)
	NERR	Error Input/Output, active low
	PZERO	Input Zero Signal +
	NZERO	Input Zero Signal -
	PSIN	Input Sine +
20	NSIN	Input Sine -

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes), <D-CODE> = date code (subject to changes);

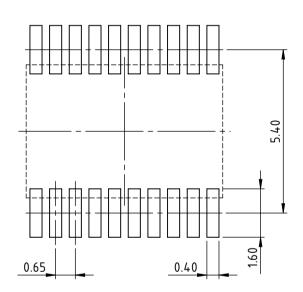
¹ External connections linking VDDA to VDD and GND to GNDA are required.

² If only a single iC-NQC is used and no chain circuitry of multiple BiSS slaves, pin SLI can remain unwired or can be linked to ground (GND).


³ It is not permissible to pull down pin SCL during power-up.


13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 5/32


PACKAGE DIMENSIONS

TOP 6.50 04.4 0.65 0.25

RECOMMENDED PCB-FOOTPRINT

All dimensions given in mm. Tolerances of form and position according to JEDEC MO-153

drb_tssop20-1_pack_1, 8:1

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 6/32

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply permissible operating conditions; functional operation is not guaranteed. Exceeding these ratings may damage the device.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VDDA	Voltage at VDDA		-0.3	6	V
G002	VDD	Voltage at VDD		-0.3	6	V
G003	Vpin()	Voltage at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, MA, SLI, SLO, A, B, Z	V() < VDDA + 0.3 V V() < VDD + 0.3 V	-0.3	6	V
G004	Imx(VDDA)	Current in VDDA		-50	50	mA
G005	Imx(GNDA)	Current in GNDA		-50	50	mA
G006	Imx(VDD)	Current in VDD		-50	50	mA
G007	Imx(GND)	Current in GND		-50	50	mA
G008	lmx()	Current in PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, MA, SLI, SLO, A, B, Z		-10	10	mA
G009	llu()	Pulse Current in all pins (Latch-up Strength)	according to Jedec Standard No. 78; Ta = 25 °C, pulse duration to 10 ms, VDDA = VDDA _{max} , VDD = VDD _{max} , Vlu() = (-0.5+1.5) x Vpin() _{max}	-100	100	mA
G010	Vd()	ESD Susceptibility at all pins	HBM 100 pF discharged through 1.5 kΩ		2	kV
G011	Tj	Junction Temperature		-40	150	°C
G012	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

Operating Conditions: VDDA = VDD = $5 V \pm 10 \%$

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range		-25		85	°C
		(extended temperature range of -40 to 125 °C available on request)					

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 7/32

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated.

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total I	Device					'	
		parameters beyond the operating co within the individual application using	onditions (with reference to independent voltage and properties of the properties of	supplies,	for insta	nce)	
001	VDDA, VDD	Permissible Supply Voltage		4.5		5.5	V
002	I(VDDA)	Supply Current in VDDA	fin() = 200 kHz; A, B, Z open			15	mA
003	I(VDD)	Supply Current in VDD	fin() = 200 kHz; A, B, Z open			20	mA
004	Von	Turn-on Threshold VDDA, VDD		3.2		4.4	V
005	Vhys	Turn-on Threshold Hysteresis		200			mV
006	Vc()hi	Clamp Voltage hi at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF	Vc()hi = V() - VDDA; I() = 1 mA, other pins open	0.3		1.6	V
007	Vc()lo	Clamp Voltage Io at PSIN, NSIN, PCOS, NCOS, PZERO, NZERO, VREF, NERR, SCL, SDA, MA, SLI, SLO, A, B, Z	I() = -1 mA, other pins open	-1.6		-0.3	V
800	Vc()hi	Clamp Voltage hi at NERR, SCL, SDA, MA, SLI, SLO, A, B, Z	Vc()hi = V() - VDD; I() = 1 mA, other pins open	0.3		1.6	V
Input	Amplifiers a	and Signal Inputs PSIN, NSIN, PC	· · · · · · · · · · · · · · · · · · ·				
101	Vos()	Input Offset Voltage	Vin() and G() in accordance with Table GAIN; $G \ge 20$	-10		10	mV
102	TCos	Input Offset Voltage Temperature Drift	G < 20 see 101	-15	±10	15	mV μV/K
103	lin()	Input Current	V() = 0 V VDDA	-50		50	nA
104	GA	Gain Accuracy	G() in accordance with Table GAIN	95		104	%
105	GArel	Gain SIN/COS Ratio Accuracy	G() in accordance with Table GAIN	97		103	%
106	fhc	Cut-off Frequency	G = 80 G = 2.667	150 630			kHz kHz
107	SR	Slew Rate	G = 80 G = 2.667	2.3 6.0			V/µs V/µs
108	Vout()tma	Permissible Internal Signal Level (Full-Scale Signal)	TMA mode: analog signal at A, B, SCL, SDA	0.5		VDDA - 0.5	V
Sine-1	Γο-Digital Co	onversion					
201	AAabs	Absolute Angle Accuracy without calibration	referred to 360° input signal, G = 2.667, Vin = 1.5 Vpp, HYS = 0	-1.0		1.0	DEG
202	AAabs	Absolute Angle Accuracy after calibration	referred to 360° input signal, HYS = 0, internal signal amplitude of 2 4 Vpp	-0.5	±0.35	+0.5	DEG
203	AArel	Relative Angle Accuracy	referred to signal periods at A, resp. B (see Fig. 1); G = 2.667, Vin = 1.5 Vpp, SELRES = 1024, FCTR = 0x0004 0x00FF, fin < fin _{max} (see Table 11)	-10		10	%
Refere	ence Voltag	e Output VREF					
801	VREF	Reference Voltage	I(VREF) = -1 mA +1 mA	48		52	% VDDA
Oscill	ator	•					
A02	fosc()	Oscillator Frequency	presented at pin SCL with subdivision of 2048; VDDA = VDD = 5 V ±10 %	56		99	MHz
			VDDA = VDD = 5 V	58	74	95	MHz
A03	TCosc	Oscillator Frequency Temperature Drift	VDDA = VDD = 5 V		-0.1		%/K
A04	VCosc	Oscillator Frequency Power Supply Dependence			+9		%/V

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 8/32

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated.

ltem No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Zero S	Signal Enab	le Inputs PZERO, NZERO				. "	
B01	Vos()	Input Offset Voltage	V() = Vcm()	-20		20	mV
B02	lin()	Input Current	V() = 0 V VDDA	-50		50	nA
B03	Vcm()	Common-Mode Input Voltage Range		1.4		VDDA -1.5	V
B04	Vdm()	Differential Input Voltage Range		0		VDDA	V
Incren	nental Outp	outs A, B, Z and I/O Interface Outp	out SLO				
D01	Vs()hi	Saturation Voltage hi	Vs()hi = VDD - V(); I() = -4 mA			0.4	V
D02	Vs()lo	Saturation Voltage lo	I() = 4 mA			0.4	V
D03	tr()	Rise Time	CL() = 50 pF			60	ns
D04	tf()	Fall Time	CL() = 50 pF			60	ns
D05	RL()	Permissible Load at A, B	TMA = 1 (calibration mode)	1			ΜΩ
D06	t _{out} ()	Slave Timeout at SLO	refer to Figure 3 and 4; TOA = 0, TIMO = 0 (long) TOA = 0, TIMO = 1 (short)	1472/f _{osc} 96/f _{osc}	:	1504/f _{osc}	μs μs
D07	t _{out} ()	Adaptive Slave Timeout at SLO	related to the clock timing, refer to Figure 5; TOA = 1 (adaptive)	64/f _{osc}	t _{init} + 128/f _{osc}	1504/f _{osc}	μs
I/O Int	erface Inpu	ts MA, SLI					
E01	Vt()hi	Threshold Voltage hi				2	V
E02	Vt()lo	Threshold Voltage lo		0.8			V
E03	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	300			mV
E04	lpu(MA)	Pull-up Current in MA	V() = 0 VDD - 1 V	-240	-120	-25	μΑ
E05	lpd(SLI)	Pull-down Current in SLI	V() = 1 VDD	20	120	300	μA
E06	fclk(MA)	Permissible MA Clock Frequency	SSI protocol BiSS protocol			4 10	MHz MHz
E09	tbusy_r	Processing Time Register Access (delay of start bit)	with read access to EEPROM			2	ms
E10	tidle	Interface Blocking Time	powering up with no EEPROM		1	1.5	ms
EEPR	OM Interfac	e Inputs SDA and Error Input NE	RR				
F01	Vt()hi	Threshold Voltage hi				2	V
F02	Vt()lo	Threshold Voltage lo		0.8			V
F03	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	300			mV
F04	tbusy()cfg	Duration of Startup Configuration	error free EEPROM access		5	7	ms
EEPR	OM Interfac	e Outputs SDA, SCL and Error O	utput NERR				
G01	f()	Write/Read Clock at SCL			36	50	kHz
G02	Vs()lo	Saturation Voltage lo	I() = 4 mA			0.45	V
G03	lpu()	Pull-up Current	V() = 0 VDD - 1 V	-600	-300	-75	μA
G04	ft()	Fall Time	CL() = 50 pF			60	ns
G05	tmin()lo	Min. Duration Of Error Indication at NERR (lo signal)	MA = hi, no BiSS access, amplitude or frequency error	10			ms
G06	Tpwm()	Cycle Duration Of Error Indication at NERR	fosc() subdivided 2 ²²		60.7		ms
G07	tw()lo	Duty Cycle Of Error Indication at NERR	signal duration low to high; AERR = 0, during amplitude error FERR = 0, during frequency error		75 50		% %
G08	RL()	Permissible Load at SDA, SCL	TMA = 1 (calibration mode)	1			MΩ

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 9/32

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated.

Item	Symbol	Parameter	Conditions				Unit
No.				Min.	Тур.	Max.	
Signa	l Monitorin	g					
H01	Vth	Voltage Threshold for Monitoring of Minimal Amplitude	VDDA = 5 V, SELAMPL = 0, AMPL = 0x00, PHI: 0°, 90°, 180°, 270° AMPL = 0x01, PHI: 0° AMPL = 0x02, PHI: 0° AMPL = 0x03, PHI: 0°	2.8 3.0 3.2 3.4	3.0 3.2 3.4 3.6	3.2 3.4 3.6 3.8	V V V
H02	Vthmax	Upper Voltage Threshold for Monitoring of Sin ² +Cos ²	VDDA = 5 V, SELAMPL = 1, AMPL = 0x040x07, PHI: 0°, 45°315°	3.35	4.5	4.95	V
H03	Vthmin	Lower Voltage Threshold for Monitoring of Sin²+Cos²	VDDA = 5 V, SELAMPL = 1, AMPL = 0x04, PHI: 0°, 45°315° AMPL = 0x05, PHI: 45° AMPL = 0x06, PHI: 45° AMPL = 0x07, PHI: 45°	0.2 0.6 1.1 1.6	1.0 1.5 2.0 2.5	1.5 2.0 2.5 3.0	V V V

CHARACTERISTICS: Diagrams

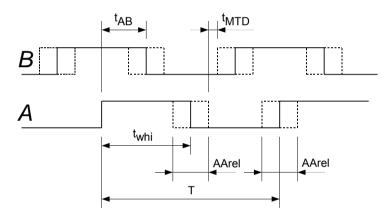


Figure 1: Definition of relative angle error and minimum transition distance

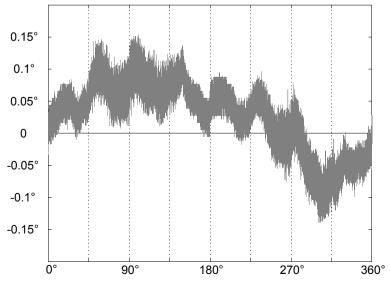


Figure 2: Typical residual absolute angle error after calibration.

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 10/32

OPERATING REQUIREMENTS: I/O Interface

Operating Conditions: VDD = $5 \text{ V} \pm 10 \text{ %}$, Ta = $-25 \dots 85 \,^{\circ}\text{C}$; input levels lo = $0 \dots 0.45 \,^{\circ}\text{V}$, hi = $2.4 \,^{\circ}\text{V} \dots \text{VDD}$

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
SSI pr	otocol					
1001	t _{frame}	Permissible Frame Repetition		*	indefinite	
1002	t _C	Permissible Clock Period		250		ns
1003	t _{L1}	Clock Signal Hi-Level Duration		125	t _{out}	ns
1004	t _{L2}	Clock Signal Lo-Level Duration		125	t _{out}	ns
1005	t _{RQ}	Request Time	Clock low-level duration at MA input	125		ns
1006	t _{P3}	Output Propagation Delay	$RL(SLO) \ge 1 k\Omega$	10	50	ns
1007	t _{out} Slave Timeout		see Elec	Char. D06		
BiSS (C protocol					
1008	t _{frame}	Permissible Frame Repetition		*	indefinite	
1009	t _C	Permissible Clock Period		100		ns
I010	t _{L1}	Clock Signal Hi-Level Duration		50	t _{out}	ns
1011	t _{L2}	Clock Signal Lo-Level Duration		50	t _{out}	ns
1012	t _{busy}	Processing Time			3t _C	ns
I013	t _{P3}	Output Propagation Delay	$RL(SLO) \ge 1 k\Omega$	10	50	ns
I014	t _{out}	Slave Timeout		see E.Cha	ar. D06, D07	
1015	t _{S1}	Setup Time: SLI stable before MA hi \rightarrow lo		25		ns
1016	t _{H1}	Hold Time: SLI stable after MA hi \rightarrow lo		10		ns

Note: * Allow tout to elapse.

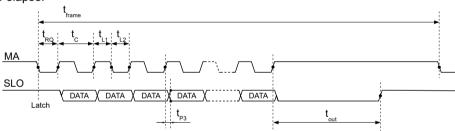


Figure 3: SSI protocol timing

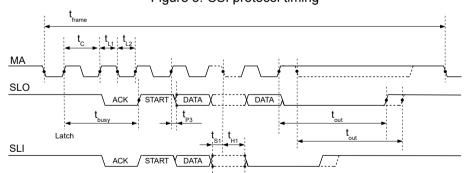


Figure 4: BiSS protocol timing

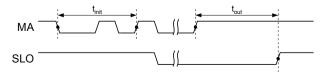


Figure 5: BiSS slave timeout

CFGAB:

Zero Signal Logic

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 11/32

PARAMETER and REGISTER

Signal Monitoring Register Description, Overview Page 11 and Error Messages Page 18 Signal Conditioning Page 12 SELAMPL: Amplitude Monitoring, function GAIN: Gain Select AMPL: Amplitude Monitoring, thresholds SINOFFS: Offset Calibration Sine AERR: Amplitude Error COSOFFS: Offset Calibration Cosine FERR: Frequency Error REFOFFS: Offset Calibration Reference **Amplitude Calibration** RATIO: Phase Calibration PHASE: TMODE: Test Mode TMA: Analog Test Mode SELRES: Resolution BiSS Interface Page 20 HYS: Hysteresis SELSSI: Protocol Version FCTR: Max. Permissible Converter Frequency TIMO, TOA: Timeout Incremental Signals Page 16 TOS: Timeout Short** Output A, B, Z CFGABZ: M2S: **Data Output and Options** Direction of Rotation ROT: CRC Polynomial and Status Messages CRC6: CBZ: 24-bit Period Counter Configuration NZB: Zero Bit ENRESDEL: Output Delay A, B, Z **ENCDS**: **Protocol Options** Zero Signal Position ZPOS: Register Protection Settings RPL: CFGZ: Zero Signal Length

GRAY:

SSI Data Format

OVERV	/IEW							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00	ENCDS	M2S	6(1:0)			SELRES(4:0)		
0x01		HYS(2:0)				ZPOS(4:0)		
0x02	ENRESDEL	SELSSI	ROT	CBZ	CFGAI	BZ(1:0)	CFG	Z(1:0)
0x03	CRC6	NZB	CFGA	B(1:0)	RPL	0	AERR	FERR
0x04				FCTI	R(7:0)			
0x05	GRAY				FCTR(14:8)			
0x06	rese	rved*	TIMO	0		TMODE(2:0)		TMA
0x07		rese	rved*		TOA		reserved*	
80x0		GAIN	N(3:0)			RATIO	O(3:0)	
0x09				SINOF	FS(7:0)			
0x0A				COSOF	FS(7:0)			
0x0B			PHAS	E(5:0)			REFOFFS	RATIO(4)
0x0C			reserved*			SELAMPL	AMP	L(1:0)
0x0D								
0x0E								
0x0F		CRC_E2	2P(7:0) - check v	alue read from t	he EEPROM for	addresses 0x00	0 to 0x0E	
	EEPROM							
0x10 - 0x1F	0x00 - 0x0F	Reserved EEP	ROM memory s	ection: iC-NQC	device configura	ation data.		
0x41 - 0x7F	0x31 - 0x6F	Reserved EEP	Reserved EEPROM memory section: BiSS C Slave Registers (device identifier 4E 51 43 35 00 00 69 43)					

Register contents are random when powering up without an EEPROM.

When no register protection is active, all registers permit read and write access (see RPL).

^{*)} Reserved registers must be programmed to zero. **) For TOS see Table 38 on page 22.

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 12/32

SIGNAL CONDITIONING

Input stages SIN and COS are configured as instrumentation amplifiers. The amplifier gain must be selected in accordance with the input signal amplitude and pro-

grammed to register GAIN according to the following table. Half of the supply voltage is available at VREF as a center voltage to enable the DC level to be adapted.

GAIN	Adr 0x08, Bit 7:4	4						
			Sine/Cosine Input Signal Levels Vin()					
		Amp	litude	Average	value (DC)			
Code	Amplification	Differential	Single-ended	Differential	Single-ended			
0x0F	80.000	up to 50 mVpp	up to 100 mVpp	0.7 V VDDA - 1.2 V	0.8 V VDDA - 1.2 V			
0x0E	66.667	up to 60 mVpp	up to 120 mVpp	0.7 V VDDA - 1.2 V	0.8 V VDDA - 1.2 V			
0x0D	53.333	up to 75 mVpp	up to 0.15 Vpp	0.7 V VDDA - 1.2 V	0.8 V VDDA - 1.2 V			
0x0C	40.000	up to 0.1 Vpp	up to 0.2 Vpp	1.2 V VDDA - 1.2 V	1.3 V VDDA - 1.3 V			
0x0B	33.333	up to 0.12 Vpp	up to 0.24 Vpp	1.2 V VDDA - 1.2 V	1.3 V VDDA - 1.3 V			
0x0A	28.571	up to 0.14 Vpp	up to 0.28 Vpp	0.7 V VDDA - 1.2 V	0.8 V VDDA - 1.3 V			
0x09	26.667	up to 0.15 Vpp	up to 0.3 Vpp	1.2 V VDDA - 1.2 V	1.3 V VDDA - 1.3 V			
0x08	20.000	up to 0.2 Vpp	up to 0.4 Vpp	0.7 V VDDA - 1.2 V	0.8 V VDDA - 1.3 V			
0x07	14.287	up to 0.28 Vpp	up to 0.56 Vpp	1.2 V VDDA - 1.3 V	1.4 V VDDA - 1.4 V			
0x06	10.000	up to 0.4 Vpp	up to 0.8 Vpp	1.2 V VDDA - 1.3 V	1.4 V VDDA - 1.5 V			
0x05	8.000	up to 0.5 Vpp	up to 1 Vpp	0.8 V VDDA - 1.4 V	1.0 V VDDA - 1.6 V			
0x04	6.667	up to 0.6 Vpp	up to 1.2 Vpp	0.8 V VDDA - 1.4 V	1.1 V VDDA - 1.7 V			
0x03	5.333	up to 0.75 Vpp	up to 1.5 Vpp	0.9 V VDDA - 1.5 V	1.3 V VDDA - 1.9 V			
0x02	4.000	up to 1 Vpp	up to 2 Vpp	1.2 V VDDA - 1.6 V	1.7 V VDDA - 2.1 V			
0x01	3.333	up to 1.2 Vpp	up to 2.4 Vpp	1.2 V VDDA - 1.7 V	1.8 V VDDA - 2.3 V			
0x00	2.667	up to 1.5 Vpp	up to 3 Vpp	1.3 V VDDA - 1.8 V	2.0 V VDDA - 2.6 V			

Table 2: Input gain

SINOFFS	Adr 0x09, Bit 7:0		
COSOFFS	Adr 0x0A, Bit 7:0		
Code	Output Offset	Input Offset	
0x00	0 V	0 V	
0x01	-7.8125 mV	-7.8125* mV / GAIN	
0x7F	-0.9922 V	-0.9922 V / GAIN	
0x80	0 V	0 V	
0x81	+7,8125 mV	+7.8125 mV / GAIN	
0xFF	+0.9922 V	+0.9922 V / GAIN	
Notes	*) With REFOFFS = 0x00 and VDDA = 5 V.		

Table 3: Sine/cosine offset calibration

REFOFFS	Adr 0x0B, Bit 1
Code	Reference Voltage
0x00	Dependent on VDDA (example of application: MR sensors)
0x01	Not dependent on VDDA (example of application: Sin/Cos encoders)

Table 4: Offset reference

RATIO	Adr 0x0B, Bit 0, Adr 0x08, Bit 3:0				
Code	COS / SIN	Code	COS / SIN		
0x00	1.0000	0x10	1.0000		
0x01	1.0067	0x11	0.9933		
0x0F	1.1	0x1F	0.9000		

Table 5: Amplitude calibration

PHASE	Adr 0x0B, Bit 7:2		
Code	Phase Shift	Code	Phase Shift
0x00	90°	0x20	90°
0x01	90.703125°	0x21	89.296875°
0x12	102.65625°	0x32	77.34375°
	102.65625°		77.34375°
0x1F	102.65625°	0x3F	77.34375°

Table 6: Phase calibration

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 13/32

CONVERTER FUNCTIONS

SELRES	Adr 0x00, Bit 4:	0
Code	Binary Resolutions	Examples of Permissible Input Frequencies fin _{max} (FCTR 0x0004, 0x4302)
0x00	-	
0x01	-	
0x02	-	
0x03	8192	171 Hz, 1.14 kHz
0x04	4096	342 Hz, 2.28 kHz
0x05	2048	683 Hz, 4.56 kHz
0x06	1024	1.37 kHz, 9.1 kHz
0x07	512	2.73 kHz, 18.2 kHz
0x08	256	5.47 kHz, 36.5 kHz
0x09	128	10.9 kHz, 72.9 kHz
0x0A	64	21.9 kHz, 145.8 kHz
0x0B	32	43.7 kHz (max. 250 kHz)
0x0C	16	87.5 kHz (max. 250 kHz)
0x0D	8	175 kHz (max. 250 kHz)
0x0E	-	
0x0F	-	

Table 7: Binary resolutions

HYS	Adr 0x01, Bit 7:	5		
Code	Hysteresis in degrees	Hysteresis in LSB	Absolute error*	
0x00	0°			
0x01	0.0879°	1 LSB @ 12 bit	0.044°	
0x02	0.1758°	1/2 LSB @ 10 bit	0.088°	
0x03	0.3516°	1 LSB @ 10 bit	0.176°	
0x04	0.7031°	1/2 LSB @ 8 bit	0.352°	
0x05	1.4063°	1 LSB @ 8 bit	0.703°	
0x06	5.625°		2.813°	
0x07	45°	only recommended for calibration	22.5°	
Notes	The digital angle hysteresis separates the converter's switch points between CW and CCW operation. It thus eliminates spurious AB output switching during stillstand if set sufficiently high related to the input noise. *) Note that the resulting absolute error is equivalent to half the angle hysteresis. Use zero hysteresis for high accuracy serial BiSS or SSI output.			

Table 9: Hysteresis

SELRES	Adr 0x00, Bit 4:	0	
Code	Decimal Resolutions	Examples of Permissible Input Frequencies fin _{max} (FCTR 0x0004, 0x4302)	
0x10	2000	700 Hz, 4.67 kHz	
0x11	1600	875 Hz, 5.83 kHz	
0x12	1000	1.4 kHz, 9.33 kHz	
0x13	800	1.75 kHz, 11.67 kHz	
0x14	500	2.8 kHz, 18.67 kHz	
0x15	400	3.5 kHz, 23.3 kHz	
0x16	250 ^{*1}	5.6 kHz, 37.3 kHz	
0x17	125 *1,2	5.6 kHz, 37.3 kHz	
0x18	320	4.4 kHz, 29.2 kHz	
0x19	160 *2	4.4 kHz, 29.2 kHz	
0x1A	80 *4	4.4 kHz, 29.2 kHz	
0x1B	40 *8	4.4 kHz, 29.2 kHz	
0x1C	200	7.0 kHz, 46.7 kHz	
0x1D	100 ^{*2}	7.0 kHz, 46.7 kHz	
0x1E	50 ^{*1,4}	7.0 kHz, 46.7 kHz	
0x1F	25 ^{*1,8}	7.0 kHz, 46.7 kHz	
Notes	*1 Not suitable f	or incremental output on A, B.	
	*2.4.8 The internal resolution is higher by a factor of 2, 4 or 8.		

Table 8: Decimal resolutions

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 14/32

MAXIMUM POSSIBLE CONVERTER FREQUENCY

The converter frequency automatically adjusts to the value required by the input frequency and resolution. This value ranges from zero to a maximum dependent on the oscillator frequency that is set via register FCTR.

Serial Data Output

For BiSS or SSI output the maximum possible converter frequency can be adjusted to suit the maximum input frequency; an automatic converter resolution step-down feature can be enabled via the FCTR register. Should the input frequency exceed the frequency limit of the selected converter resolution, the LSB is kept stable and

not resolved any further; the interpolation resolution halves.

If the next frequency limit is overshot, the LSB and LSB +1 are kept stable and so on. If the input frequency again sinks below this frequency threshold, fine resolution automatically returns.

With the programming of CRC6 = 1 a resolution stepdown will be signalled via the BiSS warning bit.

Max. Pos	Max. Possible Converter Frequency For Serial Data Output									
	Resolution			Protocol		Max. Input Frequency	Restrictions	estrictions Examples*		
	Requiremen	nts					at high input frequency	fin _{max}	[kHz] at	resol.
FCTR	Min. Res.	bin	dec	BiSS	SSI	fin _{max}		8192	1024	200
0x0004		Х	Х	Χ	Х	fosc()min / 40 / Resolution	_	0.17	1.37	7.0
0x4102	≥ 8	Х	Х	Х	Х	fosc()min / 24 / Resolution	Rel. angle error 2x increased	0.28	2.3	11.7
0x4202	≥ 16	Х	Х	Χ	Х	2 x fosc()min / 24 / Res.	Rel. angle error 4x increased	0.57	4.6	23.3
0x4302	≥ 32	Х	Х	Χ	Χ	4 x fosc()min / 24 / Res.	Rel. angle error 8x increased	1.14	9.1	46.7
0x4702	≥ 64	Х	-	Х	Х	8 x fosc()min / 24 / Res.	Resolution lowered by factor of 2	2.3	18.2	-
0x4B02	≥ 128	Х	-	Χ	Х	16 x fosc()min / 24 / Res.	Res. lowered by factor of 2-4	4.6	36.5	-
0x4F02	≥ 256	Х	-	Χ	Χ	32 x fosc()min / 24 / Res.	Res. lowered by factor of 2-8	9.1	72.9	-
0x5302	≥ 512	Х	-	Х	Х	64 x fosc()min / 24 / Res.	Res. lowered by factor of 2-16	18.2	146	-
0x5702	≥ 1024	Х	-	Χ	Χ	128 x fosc()min / 24 / Res.	Res. lowered by factor of 2-32	36.5	250	-
0x5B02	≥ 2048	Х	-	Χ	Χ	256 x fosc()min / 24 / Res.	Res. lowered by factor of 2-64	72.9	-	-
0x5F02	≥ 4096	Х	-	Х	Χ	512 x fosc()min / 24 / Res.	Res. lowered by factor of 2-128	146	-	-
0x6302	8192	Х	-	Х	Х	1024 x fosc()min / 24 / Res.	Res. lowered by factor of 2-256	250	-	-
Notes	*) Calculate	d with	fosc	()min ta	ken fro	om Electrical Characteristics, it	em A02.	•	•	

Table 10: Maximum converter frequency for serial data output.

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 15/32

Incremental Output to A, B and Z

Settings for the maximum possible converter frequency using register FCTR are governed by two criteria:

- 1. The maximum input frequency
- 2. System restrictions caused by slow counters or data transmission via cable

In this case it is sensible to preselect a minimum transition distance for the output signals. These settings

also make a suitable zero-delay digital glitch filter that acts on ESD impact on the sensor and keeps the output signals spike free through temporal separation, for example.

Serial data output is possible at any time in BiSS or SSI protocol. However, for the transfer of angle data to the output register the incremental output is halted for one period of the clock signal at pin MA.

1. Max. F	1. Max. Possible Converter Frequency Defined By The Maximum Input Frequency									
	Output Frequency	Resc	lution	Maximum Input Frequency	Restrictions	Examp	oles*			
	fout @ finmax	Requ	ıirem.		at high input frequency	fin _{max}	[kHz] at	resol.		
FCTR	A, B	bin	dec	fin _{max}		8192	1024	200		
0x0004	325 kHz	Х	Χ	fosc()min / 40 / Resolution	None	0.17	1.37	7.0		
0x4102	542 kHz	2 kHz X X		fosc()min / 24 / Resolution	Relative angle error 2x increased	0.28	2.3	11.7		
0x4202	1.08 MHz	Х	Χ	2 x fosc()min / 24 / Res.	Relative angle error 4x increased	0.57	4.6	23.3		
0x4302	2.17 MHz	2.17 MHz X X 4 x fosc()min / 24 / Res. Relative angle error 8x increased 1.14 9.1 46.7								
Notes	*) Calculated with fosc()min taken from Electrical Characteristics, item A02.									

Table 11: Maximum possible converter frequency for incremental A/B/Z output, defined by the maximum input frequency

2. Max. P	Max. Possible Converter Frequency Defined By The Minimum Transition Distance						
	Output Frequency	Resc	lution	Minimum Transition Distance	Restrictions	Example*	
	fout @ t _{MTD}	Requ	ıirem.	at A, B	at high input frequency	t _{MTD} [µsec]	
FCTR	A, B	bin	dec	t _{MTD}			
0x00FF	11.2 kHz	Х	Χ	2048 / fosc()max	None	22.3	
0x00FE	11.27 kHz	Х	Χ	2040 / fosc()max	None	22.2	
0x00FD	11.3 kHz	Х	Χ	2032 / fosc()max	None	22.1	
0x0006	411 kHz	Х	Χ	56 / fosc()max	None	0.61	
0x0005	479 kHz	Х	Χ	48 / fosc()max	None	0.52	
0x0004	575 kHz	Х	Χ	40 / fosc()max	None	0.43	
0x4102	958 kHz	Х	Χ	24 / fosc()max	Relative angle error 2x increased	0.26	
0x4202	1.92 MHz	Х	Χ	12 / fosc()max	Relative angle error 4x increased	0.13	
0x4302	3.83 MHz	3.83 MHz X X 6 / fosc()max Relative angle error 8x increased 0.065					
Notes	*) Calculated with fosc()max taken from El.Char., item A02; transition distance output A vs. output B with same direction						
	of rotation.						

Table 12: Maximum possible converter frequency for incremental A/B/Z output, defined by the minimum transition distance

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 16/32

INCREMENTAL SIGNALS

CFGABZ	Adr 0x02, Bit 3:2							
Code	Mode	Pin A	Pin B	Pin Z				
0x00	Normal	Α	В	Z				
0x01	Control signals for external period counters	CA	СВ	CZ				
0x02	Calibration mode Offset+Phase The following settings are required additionally: SELRES = 0x0D ZPOS = 0x00 HYS = 0x07 ROT = 0x00 CFGAB = 0x00 AERR = 0x00	Singers + Singers + Singers 6: Offset SIN*	or 180° 360° Figure 7: Offs. COS*	Figure 8: Phase*				
0x03	Calibration mode Offset+Amplitude The following settings are required additionally: SELRES = 0x0D ZPOS = 0x00 HYS = 0x07 ROT = 0x00 CFGAB = 0x00 AERR = 0x00	SingFfs singff	rigure 10: Offs.	rano or 150 360* Figure 11: Amplit.*				
Notes		*) Trimmed accurately when duty cycle is 50 %; Recommended trimming order (after selecting GAIN): offset, phase, amplitude ratio, offset;						

Table 13: Outputs A, B, Z

ROT	Adr 0x02, Bit 5
Code	Code direction
0x00	Ascending order, B then A
0x01	Descending order, A then B

Table 14: Code direction

CBZ	Adr 0x02, Bit 4
Code	Reset via zero
0x00	Not activated
0x01	Activated

Table 15: Reset enable for period counter

ENRESDEL	Adr 0x02, Bit 7		
Code	Output*	Function	
0x00	immediately	An external counter displays the absolute angle following power-on.	
0x01	after 5 ms	An external counter only displays changes vs. the initial power-on (conditional on standby at power-on)	
Notes	*) Output delay after device configuration and internal reset (A, B, Z remains on high).		

Table 16: Output delay A, B, Z

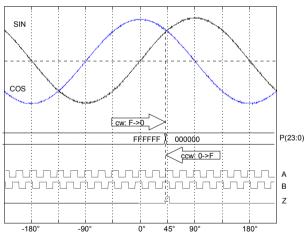


Figure 12: Period counter reset by zero signal (enabled by CBZ = 1).

Example gives a resolution of 64

(SELRES = 0x0A), a zero signal at 45° (ZPOS = 0x04, CFGAB = 0x00) and no inversion of the direction of rotation (ROT = 0x00, COS leads SIN).

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 17/32

ZPOS	Adr 0x01, Bit 4:0
Code	Position
0x00	0°
80x0	90°
0x10	180°
0x18	270°
0x01	11.25° (1 x 11.25°)
0x1F	348.75° (31 x 11.25°)
Notes	The zero signal is only output if released by the input pins (for instance with PZERO = 5 V, NZERO = VREF).

Table 17: Zero signal position

CFGZ	Adr 0x02, Bit 1:0
Code	Length
0x00	90°
0x01	180°
0x02 03	Synchronization

Table 18: Zero signal length

CFGAB	Adr 0x03, Bit 5:4
Code	Z = 1 for
0x00	B = 1, A = 1
0x01	B = 0, A = 1
0x02	B = 1, A = 0
0x03	B = 0, A = 0

Table 19: Zero signal logic

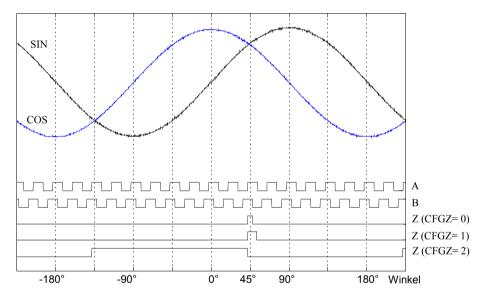


Figure 13: Incremental output signals for various zero signal lengths. Example gives a resolution of 64 (SELRES = 0x0A), a zero signal position of 45° (ZPOS = 0x04, CFGAB = 0x00) and no inversion of the direction of rotation (ROT = 0x00, COS leads SIN).

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 18/32

SIGNAL MONITORING and ERROR MESSAGES

SELAMPL AMPL	Adr 0x0C, Bit 2 Adr 0x0C, Bit 1:0				
Max (Sin ,	Max (Sin , Cos) for SELAMPL = 0				
Code	Voltage threshold V _{th}	Output amplitude*			
0x00	0.60 x VDDA	1.4 V _{pp}			
0x01	0.64 x VDDA	2.0 V _{pp}			
0x02	0.68 x VDDA	2.6 V _{pp}			
0x03	0.72 x VDDA 3.1 V _{pp}				
Sin ² + Cos ²	for SELAMPL = 1				
Code	$V_{thmin} \leftrightarrow V_{thmax}$	Output amplitude*			
0x04	$(0.20 \leftrightarrow 0.9) \text{ x VDDA}$	$1.0V_{pp} \leftrightarrow 4.5V_{pp}$			
0x05	$(0.30 \leftrightarrow 0.9) \text{ x VDDA}$	$1.5V_{pp} \leftrightarrow 4.5V_{pp}$			
0x06	$(0.40 \leftrightarrow 0.9) \text{ x VDDA}$ $2.0 \text{ V}_{pp} \leftrightarrow 4.5 \text{ V}_{pp}$				
0x07	$(0.50 \leftrightarrow 0.9) \text{ x VDDA}$	$2.5V_{pp} \leftrightarrow 4.5V_{pp}$			
Notes	V _{th} , V _{thmin} , V _{thmax} are typical values; refer to Elec. Char. No. H01 cf. for maximal values. *) Entries are calculated with VDDA = 5 V.				

Table 20: Signal amplitude monitoring

AERR	Adr 0x03, Bit 1
Code	Amplitude error message
0x00	disabled
0x01	enabled

Table 21: Amplitude error

FERR	Adr 0x03, Bit 0
Code	Excessive frequency error message
0x00	disabled
0x01	enabled
Notes	Input frequency monitoring is operational for resolutions \geq 16

Table 22: Frequency error

Configuration error	
-	Always enabled

Table 23: Configuration error

Error Indication at NERR		
Failure Mode	Pin signal NERR	
No error	HI	
Amplitude error	LO/HI = 75 % (if enabled by AERR = 1)	
Frequency error	LO/HI = 50 % (if enabled by FERR = 1)	
Configuration	LO	
Undervoltage	LO	
System error	Pulled LOW by an external error signal*.	
Notes	*) This message is visible only in the BiSS stream on the nE bit; the interpolation is not stopped.	

Table 24: Error indication at NERR

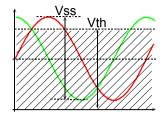


Figure 14: Signal monitoring of minimum amplitude.

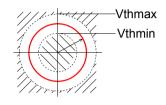


Figure 15: Sin² + Cos² signal monitoring.

Error Messages				
Failure Mode	Error bits E1, E0 for BiSS and SSI CRC6 = 0	Error bits nE, nW for BiSS and SSI CRC6 = 1		
No error	1, 1	1, nW		
Amplitude error	0, 1	0, nW		
Frequency error	1, 0	0, nW		
System error*	0, 0	0, nW		
Warning**	_	nE, 0		
Notes				
*System error	NERR pulled low by external signal			
**Warning	Automatic step-back of resolution			
Line Signal SLO	Data output is deactivated and SLO permanently high in case of: configuration phase, invalid configuration, undervoltage.			

Table 25: Error messages

To enable the diagnosis of faults, the various types of error are signaled at NERR using a PWM code as given in the key on the left.

Two error bits are provided to enable communication via the I/O interface; these bits can decode four different types of error. If NERR is held at low by an external source, such as an error message from the system, for example, this can also be verified via the I/O interface.

Error are stored until the sensor data is output via the I/O interface and then deleted. Errors at NERR are displayed for a minimum of approx. 10 ms unless they are deleted beforehand by a data output.

If an error in amplitude occurs, conversion is terminated and the incremental output signals halted. An

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

TMA

Rev E2, Page 19/32

error in amplitude rules out the possibility of an error in frequency.

TEST FUNCTIONS

TMODE	Adr 0x06, Bit 3:1	
Code	Signal at Z	Description
0x00	Z	no test mode
0x01	A xor B	Output A EXOR B
0x02	ENCLK	iC-Haus device test
0x03	NLOCK	iC-Haus device test
0x04	CLK	iC-Haus device test
0x05	DIVC	iC-Haus device test
0x06	PZERO - NZERO	iC-Haus device test
0x07	TP	iC-Haus device test
Condition	CFGABZ = 0x00	

Code	Pin A	Pin B	Pin SDA	Pin SCL
0x00	Α	В	SDA	SCL
0x01	COS+	COS-	SIN+	SIN-
Notes	COS+ COS- SIN+ SIN- To permit the verification of GAIN and OFFSET settings, signals are output after the input amplifier. A converter signal of 4 Vpp is the ideal here and should not be exceeded. Pin loads above 1 MΩ are mandatory for accurate measurements. EEPROM access is not possible during mode TMA.			

Adr 0x06, Bit 0

Table 27: Analog test mode

Tah	le 26·	Test	mode

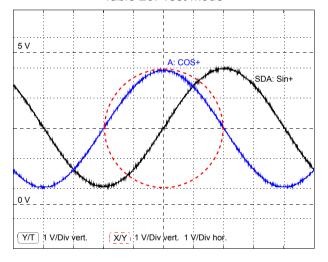


Figure 16: Calibrated signals in TMA mode.

The signal is set to approx. 4 Vpp using GAIN and must not be altered after calibration. Both display modes are suitable for OFFS (positive values) and RATIO adjustments; X/Y mode is preferable for PHASE. Test signals COS- (pin B) and SIN- (pin SCL) must be selected to set negative values for OFFS.

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 20/32

I/O INTERFACE: BISS C PROTOCOL

The serial I/O interface operates in the BiSS C protocol and enables sensor data output in uninterrupted cycles (data channel SCD). At the same time, parameters can be exchanged via bidirectional register communication (data channel CD).

The sensor data produced by iC-NQC contains the angle value (S) with 3 to 13 bits, the period count (P) with 0, 8, 12 or 24 bits, two error bits (E1 and E0) and 5 or 6 CRC bits (CRC).

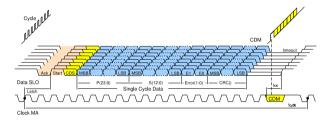


Figure 17: Example line signals (BiSS C)

Single Cycl	ngle Cycle Data Channel: SCD	
Bits	Тур	Label
024	DATA	Period counter P(23:0): 0, 8, 12, 24 bit (multiturn position)
313	DATA	Angle data S(12:0): 3 bis 13 bit (singleturn position)
1	ERROR	Error bit E1 (amplitude error)
1	ERROR	Error bit E0 (frequency error)
56	CRC	Polynomial 0x25 $x^5 + x^2 + x^0$ (inverted bit output) - or - Polynomial 0x43 $x^6 + x^1 + x^0$ (inverted bit output)

Table 28: BiSS data channels

Interface Parameters With BiSS C Protocol

SELSSI	Adr 0x02, Bit 6	
Code	Protocol	Information
0	BiSS C SSI	INTERFACE www.biss-interface.com

Table 29: Protocol version

TIMO	Adr 0x06, Bit 5		
Code	Clock	Timeout t _{tos}	fclk(MA) min*
0	46-47	approx. 20 µs	50 kHz
1	3-4	approx. 1.5 µs	660 kHz
TOA	Addr 0x07, Bit 3	3	
0	see TIMO		
1	adaptive with T _{CLK} = 42/fosc	see BiSS specification	50 kHz
Notes	A ref. clock count is equal to $\frac{32}{fosc}$ (see El. Char., A02). The permissible max. clock frequency is specified by E06. *) A low clock frequency can reduce the permissible maximum input frequency since conversion is paused for one MA cycle from <i>Latch</i> onwards.		

Table 30: Timeout configuration (protectable)

M2S	Adr 0x00, Bit 6:5	
Code	Data Length	CRC Polynomial
0x00	-	0x25 (with CRC6 = 0)
0x01	P(7:0)	0x25 (with CRC6 = 0)
0x02	P(11:0)	0x43
0x03	P(23:0)	0x43

Table 31: Period counter output

CRC6	Adr 0x03, Bit 7	
Code	CRC Polynomial	Status Messages
0	determined by M2S	E1, E0
1	0x43	nE, nW

Table 32: CRC Polynomial and status messages

NZB	Adr 0x03, Bit 6
Code	Function
0	Zero bit
1	No zero bit
Notes	The optional zero bit is output as the final bit after the CRC.

Table 33: Zero bit

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 21/32

ENCDS	Adr 0x00, Bit 7
Code	Description
0x00	Data output BiSS B or SSI
0x01	Data output BiSS C

Table 34: Protocol options

M2S can be used to set the number of period counter bits sent as sensor data. The counter bits are transmitted before the angle value, with the MSB leading.

The 5-bit CRC output is based on polynomial 0x25 (100101b), with the 6-bit CRC output based on polynomial 0x43 (1000011b) automatically coming active with longer SCD data, or when preselected by CRC6. As a rule, CRC bits are sent inverted.

An additional zero bit can be output following the CRC bits. However, disabling the zero bit by NZB = 1 is recommended when the output data length does not need to comply with existing applications.

To obtain a position data output being compatible to the BiSS B protocol parameter ENCDS = 0 does switch off the CDS bit, without a replacement by a zero bit. Thus, the output data length is shorten by one bit and register communication is limited to the direction of the master to the slave. The bidirectional BiSS C register communication must be enabled by setting ENCDS = 1.

Example of BiSS Data Output

SCD: Angle data		
Bits	Тур	Label
12	DATA	Angle data S(11:0)
2	ERROR	Error nE and warning nW
6	CRC	Polynomial 0x43
Config.	SELRES = 0x04, M2S = 0x00, CRC6 = 1, NZB = 1	

Table 35: Example format 1 for BiSS profile BP1

SCD: Angle data with 8-bit period count		
Bits	Туре	Label
8	DATA	Period counter P(7:0)
13	DATA	Angle data S(12:0)
2	ERROR	Error bits E1, E0
5	CRC	Polynomial 0x25
1	Zero	Zero bit
Config.	SELRES = 0x03, M2S = 0x01, CRC6 = 0, NZB = 0	

Table 36: Example format 2

SCD: Angle data with 24-bit period count		
Bits	Туре	Label
24	DATA	Period counter P(23:0)
13	DATA	Angle data S(12:0)
2	ERROR	Error bits E1, E0
6	CRC	Polynomial 0x43 (no zero bit)
Config.	SELRES = 0x03, M2S = 0x03, CRC6 = 0, NZB = 1	

Table 37: Example format 3

Register Communication

After the BiSS C protocol slave registers are directly addressed in a reserved address area (0x40 to 0x7F). Other storage areas are addressed dynamically and in blocks. BiSS addresses 0x00 to 0x3F aim for a register bank consisting of 64 bytes, the physical storage address of which is determined by Bank Select n.

iC-NQC supports up to 16 storage banks, making it possible to use an 8-bit EEPROM to its full capacity. There is therefore also enough storage space for an ID plate (EDS) and OEM data.

Information regarding memory map and addressing via BiSS is given on page 26).

Internal Reset Function

A write access at RAM address 0x00 (BiSS address 0x00 with Bank Select n = 0) triggers an internal reset.

Based on the current configuration in the RAM, iC-NQC restarts without reading the EEPROM. The configured interface timeout and write protect settings become active, the period counter is set to zero and any stored configuration errors are deleted. The data output via SLO and the incremental signals at A, B and Z are released. Providing no amplitude error is present, the converter again counts up from an angle value of zero to the current angle position.

Short BiSS Timeout

For programming via the I/O interface iC-NQC has a short BiSS timeout function according to the description of the BiSS C protocol (see page 19, Table 2, El. Char. no. 6).

Regardless of register protection settings a short timeout of typically 1.8 μ s can be temporarily activated by writing value 0x07 to address 0x7C (address 124d). A controller can then transmit the device configuration over a shorter period.

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 22/32

TOS	Adr 0x7C, Bit 2:0
Code	Function
000	Regular timeout (configured by TIMO)
001111	Short timeout (equal to TIMO = 1)

Table 38: Short timeout (via BiSS device ID)

The value written to address 0x7C is also transferred to the EEPROM, provided an EEPROM has been connected up and is available.

On reading address 0x7C the byte stored in the EEP-ROM is output as part of the BiSS device ID. Here, high-order bits 7:3 are part of the manufacturer's ID; low-order bits 2:0 act as an indicator of the timeout options (regular or short timeout, see Table 38).

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 23/32

I/O INTERFACE: SSI Protocol

iC-NQC can transmit position data in SSI protocol mode; the parameters described in the following give the necessary settings and options.

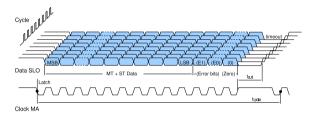


Figure 18: Example line signal (SSI)

SELSSI	Adr 0x02, Bit 6
Code	Protocol
0	BiSS C
1	SSI

Table 39: Protocol version

TIMO	Adr 0x06, Bit 5					
Code	Timeout t _{tos} fclk(MA)min*					
0	Long: approx. 20 µs	50 kHz				
1	not permitted					
TOA	Adr 0x07, Bit 3					
0	see TIMO					
1	not permitted					
Notes	A ref. clock count is equal to $\frac{32}{fosc}$ (see El. Char. A02). The permissible max. clock frequency is specified by item E06. *) A low clock frequency can reduce the permissible maximum input frequency since conversion is paused for one MA cycle from <i>Latch</i> onwards.					

Table 40: Timeout configuration for SSI

M2S	Adr 0x00, Bit 6:5
Code	Period counter output length
0x00	-
0x01	P(7:0)
0x02	P(11:0)
0x03	P(23:0)

Table 41: Period counter for SSI data output

CRC6	Adr 0x03, Bit 7	
NZB	Adr 0x03, Bit 6	
Code	Additional bits	Ring operation
0 0	E1, E0	no
0 1	none	no
1 0	nE, nW, zero bit	yes
11	none	yes

Table 42: Options for SSI data output

GRAY	Adr 0x05, Bit 7
Code	SSI data format
0	binary coded
1	gray coded
Notes	Data output starts with MSB for binary or Gray coded data.

Table 43: SSI data format

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 24/32

Examples of SSI Data Output

SSI O	ıtput Fo	rmats																				
13-bit	SSI																					
Res	Mode	Error	CRC	T1	T2	Т3	T4 T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	T21	T22	T23	T24	T25
10 bit	SSI	Х	-	S9	S8	S7	S6 S0	E1	E0	0	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
		E	xample							0	0	0	0	0	0	0	0	0	0	0	0	0
13 bit	SSI *1	-	-	S12	S11	S10	S9 S3	S2	S1	S0	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
		E	xample								0	0	0	0	0	0	0	0	0	0	0	0
	SSI-R	-	-	S12	S11	S10	S9 S3	S2	S1	S0	Stop	S12	S11	S10	S9	S8	S7	S6	S5	S4	S3	S2
		E	xample								0											
25-bit	SSI																					
13 bit	SSI	Х	-	S12	S11	S10	S9 S3	S2	S1	S0	E1	E0	0	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
		E	xample										0	0	0	0	0	0	0	0	0	0
8 + 13 bit ^{*3}	SSI	Х	-	P7	P6	P5	P4 P0, S12, S11	S10	S9	S8	S7	S6	S5	S4	S3	S2	S1	S0	E1	E0	0	Stop
		E	xample																		0	0
		Config	guration	Inpu	t SLI:	= 0, S	ELSSI = 1,	M2S	= 0x0	0, CR	C6 =	0, NZ	B = 0	, unle	ss oth	nerwis	se not	ted.				
				*1) C	CRC6	= 0, 1	NZB = 1; *2)	CRC	6 = 1	, NZB	= 1; *	3) M	2S = ()x01								
		(Caption	SSI:	= SSI	proto	col															
			-	SSI-	R=S	SI rin	g operation															

Table 44: SSI transmission formats

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 25/32

EEPROM INTERFACE

The serial EEPROM interface consists of the two pins SCL and SDA and enables read and write access to a serial EEPROM with I²C interface (with at least 128 bytes, 5 V type with a 3.3 V function; e.g. 24C01, 24C02, 24C08 and maximal 24C16).

The configuration data in the EEPROM, of addresses 0x00 to 0x0E, is secured by a CRC check value to address 0x0F. When the device is powered up, the address range from 0x00 to 0x0F is mapped onto iC-NQC's configuration RAM. The higher memory area contains BiSS C slave registers and optional memory banks available to the sensor system.

The register access to the configuration data and the memory banks 1 to 7 (intended for EDS) can be restricted by parameter RPL.

N.B. When writing configuration data to the EEPROM (BiSS addresses 0x10 to 0x1F) a wait time of at least 4 ms must be allowed after each register.

Example of CRC Calculation Routine

```
unsigned char ucDataStream = 0;
int iCRCPoly = 0x127;
unsigned char ucCRC=0;
int i = 0;

ucCRC = 0; // start value !!!
for (iReg = 0; iReg <15; iReg ++)
{
   ucDataStream = ucGetValue(iReg);
   for (i=0; i<=7; i++) {
    if ((ucCRC & 0x80) != (ucDataStream & 0x80))
        ucCRC = (ucCRC << 1) ^ iCRCPoly;
   else
        ucCRC = (ucCRC << 1);
        ucDataStream = ucDataStream << 1;
   }
}</pre>
```

CRC_E2P	Adr 0x0F, Bit 7:0
Code	Description
0x00	
	Check value formed by CRC polynomial 0x127
0xFF	

Table 45: Check value for EEPROM data

Register Co	onfiguration	
BiSS Adr hex	BiSS Adr decimal	Contents
0x000F	015	Config. Data RAM (16 bytes)
0x101F	1631	Config. Data EEPROM (16 bytes)
0x203F	3263	Unused memory area (32 bytes)
BiSS C Sla	ve-Registers	(direct addresses):
0x40	64	Bank Select (1 byte)
0x41	65	EDS Bank (1 byte)
0x4243	6667	Profile ID (2 bytes)
0x4447	6871	Serial No. (4 bytes)
0x4877	72119	Slave Registers (48 bytes)
		Device ID (6 bytes):
0x78	120	4E (default)
0x79	121	51 (default)
0x7A	122	43 (default)
0x7B	123	31 (default)
0x7C	124	Bit 7:3: Adr 0x00, Bit 2:0: TOS
0x7D	125	00 (default)
		Manufacturer's ID (2 bytes):
0x7E	126	69 (default)
0x7F	127	43 (default)

Table 46: Register overview

RPL	Adr 0x03, Bi	Adr 0x03, Bit 3						
Code	Bank 0 Config. Dat.	0x407F BiSS ID	Bank 17 EDS	Bank 815 User Data				
0x0	read / write	read / write	read / write	read / write				
0x1	-	read*	read	read / write				
Notes	*) Exception possible.	: write to 0x40	and 0x7C is	always				

Table 47: Register protection settings

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 26/32

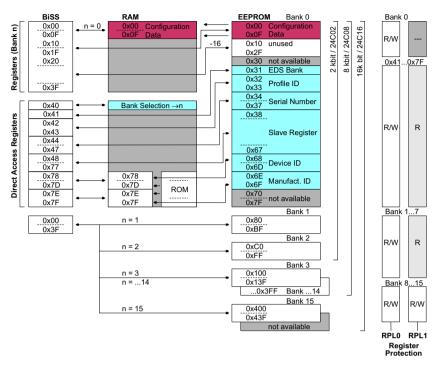


Figure 19: Registers and addressing

STARTUP BEHAVIOR

Startup With A Configured EEPROM

After the supply has been turned on (power-on reset), iC-NQC reads the configuration data from the EEPROM. During this phase it actively keeps error pin NERR at a low signal (open drain output), and data output SLO and the incremental signals at A, B and Z at a high signal.

After a successful CRC the data output to SLO and to the incremental A, B, and Z outputs is released and the error indication at pin NERR reset; an external pull-up resistor at pin NERR can supply a high signal. iC-NQC then switches to normal operation and determines the current angle position, providing that a sensor is connected up to it and there is no amplitude error (or this is deactivated).

Should the CRC prove unsuccessful due to a data error (disrupted transmission, no EEPROM or the EEPROM is not programmed), the configuration phase is automatically repeated. After a third failed attempt, the procedure is aborted and error pin NERR displays a permanent low; data output SLO and the incremental signals at A, B and Z remain at a high signal.

Startup Without An EEPROM

The configuration RAM contains random values after startup; iC-NQC does not have a default configuration. Error pin NERR shows a low signal (open drain output); data output SLO and the incremental signals at A, B and Z indicate a high signal.

To reduce the device configuration time, a short timeout of $3 \mu s$ maximum (cf. TIMO = 1 and TOA = 0) can be temporarily activated by writing value 0x07 to address 0x7C (address 124d).

When operated without an EEPROM, iC-NQC does not respond to higher addresses - with the exception of the BiSS addresses reserved for manufacturer and device IDs (0x78 to 0x7F). This address area supplies the chip version from the ROM.

Initialization After Configuration Failure

So that it is always possible to talk to iC-NQC via the I/O interface, iC-NQC first ignores the register values of TIMO, TOA, RPL and TMA. Instead, iC-NQC applies the longest timeout (cf. TIMO = 0 and TOA = 0), ignores safety settings (cf. RPL = 0x0) and evaluates the BiSS register communication (CDM bit from the CD data channel).

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 27/32

During this phase regular bidirectional BiSS register communication is not yet possible, as data output SLO is permanently kept at high. Writing the configuration to RAM addresses 0x01 to 0x0C and to address 0x00 must be executed without evaluating a reply. Data input SLI is ignored; iC-NQC always uses slave ID 0.

Each cycle transmits a single bit only and can be reduced to four clocks plus the timeout (CDM). The fol-

lowing figures each show a single cycle with CDM = 0 and CDM = 1. A wide range of 100 ns to 12.5 μ s is permissible for clock period T(MA); the timeout must last at least 30 μ s.

A complete write cycle requires 14 cycles at CDM = 0 and a sequence of 32 cycles calculated according to BiSS-C register communication.

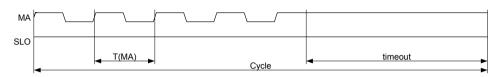


Figure 20: BiSS cycle at CDM = 0

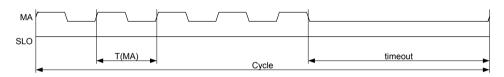


Figure 21: BiSS cycle at CDM = 1



Figure 22: BiSS cycle extract for a CDM sequence of '0010'.

Ahead of a write access to address zero finishing the initialization phase and setting the BiSS interface to normal operation, at least the following register bits need to be reset: SELSSI at address 0x02, RPL at address 0x03, and TMA and TIMO at address 0x06.

The following sequence gives an example of programming addresses 0x02, 0x03 and 0x06 to zero and subsequently executing a reset by programming address 0x00 with a value of 0x8D (141d).

"000000000000000"

"1100000001000000110000000011110"

"00000000000000"

"11000000001100110110000000011110"

"000000000000000"

"11000000011011000110000000011110"

"00000000000000"

"1100000000001100111000110101010"

Notes: Data output SLO is only operational following initialization. The controller needs to execute the described initialization without any feedback (sending CDM bits without evaluating CDS bits).

N.B.: CDM bits are inverted on the line; when CDM = 1 the timeout is at low.

Programming tip: After writing a byte to the EEP-ROM the same byte should be read back. When doing so, iC-NQC does not output the start bit if the EEPROM is busy with its internal write procedure and so denies I2C access. Several read attempts may be required if the I2C interface is still blocked causing iC-NQC to refuse the read access.

When writing to the EEPROM without reading the byte back, a wait time of at least 4 ms must be allowed after each register.

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 28/32

APPLICATION NOTES

Principle Input Circuits

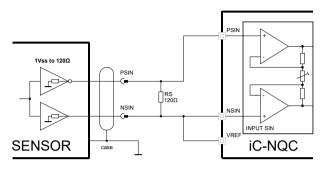


Figure 23: Input circuit for voltage signals of 1 Vpp with no ground reference. When ground is not separated the connection NSIN to VREF must be omitted.

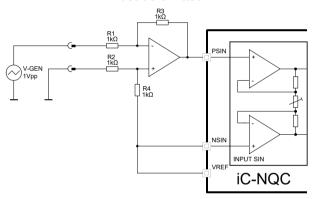


Figure 25: Input circuit for non-symmetrical voltage or current source signals with ground reference (adaptation via resistors R3, R4).

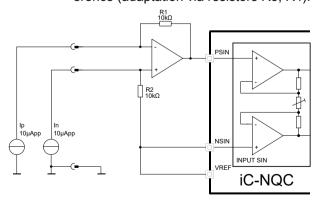


Figure 27: Input circuit for complementary low-side current source outputs, such as for opto encoder iC-WG.

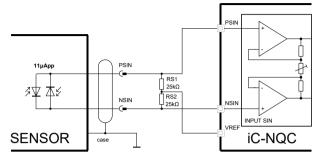


Figure 24: Input circuit for current signals of 11 µA with no ground reference. Offset calibration is not possible with this circuit.

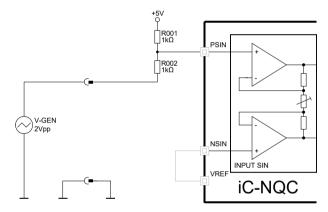


Figure 26: Simplified input wiring for non-symmetrical voltage signals with ground reference.

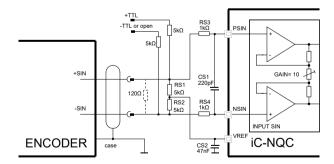


Figure 28: Combined input circuit for 11 µA, 1 Vpp (with 120 Ω termination) or TTL encoder signals. RS3/4 and CS1 serve as protection against ESD and transients.

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION (CHaus

Rev E2, Page 29/32

Input Circuit for Sine Encoders (1 Vpp)

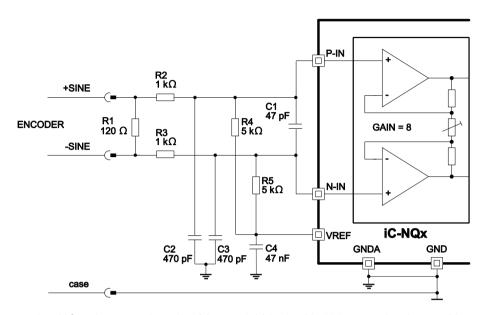


Figure 29: Input circuit for sine encoders (0.8 Vpp to 1.2 Vpp) with 120 Ω termination and low-pass filtering. R2/R3 serve as protection against ESD and transients, R4/R5 reduce the input signal to suit an input gain of 8.

Basic Circuit for MR Sensors

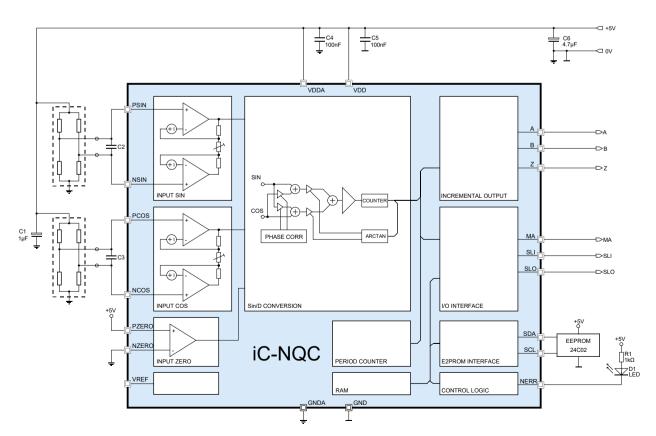


Figure 30: Basic circuit for the evaluation of MR bridge sensors.

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 30/32

EVALUATION BOARD

iC-NQC comes with a demo board for test purposes. Instructions are available separately.

DESIGN REVIEW: Function Notes

iC-NQC 2		
No.	Function, Parameter/Code	Description and Application Notes
		Please refer to datasheet release B1.

Table 48: Notes on chip functions regarding iC-NQC chip revision 2.

iC-NQC 3		
No.	Function, Parameter/Code	Description and Application Notes
1	GRAY	For Gray-coded data output clock cycles must be fully completed. An earlier termination results in invalid data for the following read out cycle.
2	Startup	An invalid CRC keeps only SLO permanently on high, the incremental output to A, B and Z is not blocked.

Table 49: Notes on chip functions regarding iC-NQC chip revision 3.

Function, Parameter/Code GRAY Startup	Description and Application Notes Gray-coded data output can be terminated at any time. An invalid CRC keeps SLO and A, B and Z permanently on high (until an internal reset).
Startup	An invalid CRC keeps SLO and A, B and Z permanently on high (until an internal
•	, , , , , , , , , , , , , , , , , , , ,
Daviad acception	
Period counting	Following power-on and after an internal reset the period counter is initialized with a value of zero (as all former chip releases). If an input angle of exactly 0° is applied and a movement towards 270° is following, the period counter counts to the value -1 (former chip releases maintain the value of zero).
Serial Data Output, power-up behavior with FCTR > 0x4702	Serial data can be raw initially if FCTR enables automatic step-down of resolution and if the input signals are absolutely stable during power up. Settling to the input angle at full resolution is obtained as soon as the inputs change. Note: The warning bit (use CRC6 = 1) indicates a reduced resolution (by nW = 0) during initial settling and tracking of high input frequencies.

Table 50: Notes on chip functions regarding iC-NQC chip revision 5.

iC-NQC	5T1	
No.	Function, Parameter/Code	Description and Application Notes
14		Refer to iC-NQC_5.
5	BiSS Device ID	With TMA mode enabled, addresses 0x78 to 0x7F return:
		4E 51 43 35 54 31 69 43.

Table 51: Notes on chip functions regarding iC-NQC chip revision 5T1.

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 31/32

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
E1	2020-03-02	PACKAGING INFORMATION	Package dimensions added	4
		ELECTRICAL CHARACTERISTICS	Item 108: added for full-scale signal Item A02, fosc at 5 V: adaption of limits Items D06, D07 added as new items Items E07, E08 moved to Operating Requirements	7
		OPERATING REQUIREMENTS: I/O Interface	Section updated, new figures added	10
		CONVERTER FUNCTIONS	Table 9: Note added on hysteresis	13
		SIGNAL MONITORING and ERROR MESSAGES	Table 24: Note added on system error	18
		DESIGN REVIEW: Function Notes	Table 50: item 4 added	30

Rel.	Rel. Date*	Chapter	Modification	Page
E2	2023-02-03	ELECTRICAL CHARACTERISTICS	Items 104, 107, A02, G01: adaption of limits	7
		OPERATING REQUIREMENTS: I/O Interface	Item I012: correction max. processing time of t _{busy}	10
		DESIGN REVIEW: Function Notes	Chip revision iC-NQC 5T1 added	30

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus. iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade

mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA)

^{*} Release Date format: YYYY-MM-DD

13-bit Sin/D CONVERTER WITH SIGNAL CALIBRATION

Rev E2, Page 32/32

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-NQC	TSSOP20 4.4 mm RoHS compliant	Temperature range -40 °C to +125 °C	iC-NQC TSSOP20
	rono compilant		iC-NQC TSSOP20 ET -40/125
Evaluation Board			iC-NQC EVAL NQ6D

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

 iC-Haus GmbH
 Tel.: +49 (0) 61 35 - 92 92 - 0

 Am Kuemmerling 18
 Fax: +49 (0) 61 35 - 92 92 - 192

 D-55294 Bodenheim
 Web: https://www.ichaus.com

 GERMANY
 E-Mail: sales@ichaus.com

Appointed local distributors: https://www.ichaus.com/sales_partners