8-CHANNEL ACTIVE PHOTOSENSOR ARRAY Rev C1, Page 1/7 #### **FEATURES** Monolithic array of independent photosensors with excellent matching Compact photosensor size of 800 µm x 300 µm enabling high-quality encoder scanning at reduced system dimensions Narrow track pitch of 0.42 mm cuts down illumination efforts Enhanced EMI immunity due to on-chip pre-amplification Dark current compensation permits high temperature operation Open-collector outputs as highside current source Simple gain setting and current-to-voltage conversion by external load resistors Single supply operation from 4 V to 5.5 V Low power consumption Space saving, RoHS compliant optoQFN and optoBGA packages Options: extended temperature range of -40 to 125 °C, customized COB modules, reticles and code discs #### **APPLICATIONS** Optical position encoding from analog sine/cosine signals Incremental encoders with index signal #### **PACKAGES** 14-pin optoBGA 6.2 mm x 5.2 mm # **BLOCK DIAGRAM** +4...5.5 V iC-LSB VCC **A2** DA₂ **B2**, **B1** $\mathsf{DB1} \angle$ [∠] DB2 C2 C1 ackslash DC2 D1 **D2** $DD1 \angle$ \triangle DD2 **GND** ## 8-CHANNEL ACTIVE PHOTOSENSOR ARRAY Rev C1, Page 2/7 #### DESCRIPTION The iC-LSB sensor array, coming with 8 independent channels, is a general purpose optoelectronic scanner made to suit a variety of encoding applications, such as rotary and linear encoders used for motion control, robotics, power tools etc. The sensor array features monolithically integrated photosensors with active areas of 800 μ m x 300 μ m each in combination with fast on-chip photocurrent amplifiers, enabling an analog output at reasonable signal strength to the circuit board. The highside current source output construction avoids a ground referenced signal and permits the subsequent electronics to adjust the gain. In its simplest form this is done by load resistors, for instance. The spectral sensitivity range includes visible to near infrared light, with the maximum sensitivity being close to a wavelength of 700 nm. Output currents of up to $50 \,\mu\text{A}$ are supplied under low light conditions, for instance when illuminated at only $3 \,\mu\text{W/mm}^2$ by an $850 \,\text{nm}$ LED. The photocurrent gain is $46 \,\text{dB}$ typically. ### **PACKAGES** ### PAD LAYOUT Chip size 2.80 mm x 1.96 mm # PAD FUNCTIONS No. Name Function | 1 | VCC | +45.5 V Supply Voltage | |----|-----|--------------------------------| | 2 | A1 | Highside Current Source Output | | 3 | B1 | Highside Current Source Output | | 4 | C1 | Highside Current Source Output | | 5 | D1 | Highside Current Source Output | | 6 | D2 | Highside Current Source Output | | | C2 | Highside Current Source Output | | 8 | B2 | Highside Current Source Output | | 9 | A2 | Highside Current Source Output | | 10 | GND | Ground | 5 6 7 8 9 ## 8-CHANNEL ACTIVE PHOTOSENSOR ARRAY Rev C1, Page 3/7 10 Pin numbers marked n.c. are not in use. For dimensional specifications refer to the relevant package data sheets, available separately. IC top markings, such as <LOT CODE>, indicate the orientation of the device. 14 GND Ground ## **iC-LSB** 8-CHANNEL ACTIVE PHOTOSENSOR ARRAY Rev C1, Page 4/7 ## **ABSOLUTE MAXIMUM RATINGS** These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur. | Item | Symbol | Parameter | Conditions | | | Unit | |------|--------|---------------------------------|---------------------------------------|------|---------|------| | No. | | | | Min. | Max. | | | G001 | VCC | Voltage at VCC | | -0.3 | 6 | V | | G002 | I(VCC) | Current in VCC | | -20 | 20 | mA | | G003 | V() | Pin Voltage, all signal outputs | | -0.3 | VCC+0.3 | V | | G004 | I() | Pin Current, all signal outputs | | -20 | 20 | mA | | G005 | Vd() | ESD Susceptibility, all pins | HBM, 100 pF discharged through 1.5 kΩ | | 2 | kV | | G006 | Tj | Junction Temperature | | -40 | 150 | °C | | G007 | Ts | Chip Storage Temperature | | -40 | 150 | °C | ### THERMAL DATA | Item | Symbol | Parameter | Conditions | | · | | Unit | |------|--------|-------------------------------------|---|------|------|------------|------| | No. | | | | Min. | Тур. | Max. | | | T01 | Та | Operating Ambient Temperature Range | package oBGA LS2C | -20 | | 90 | °C | | | | | (extended temperature range on request) | | | | | | T02 | Ts | Storage Temperature Range | package oBGA LS2C | -30 | | 110 | °C | | T03 | Tpk | Soldering Peak Temperature | package oBGA LS2C | | | | | | | | | tpk < 20 s, convection reflow
tpk < 20 s, vapor phase soldering | | | 245
230 | °C | | | | | TOL (time on label) 8 h;
Please refer to customer information file No. 7
for details. | | | | | ## 8-CHANNEL ACTIVE PHOTOSENSOR ARRAY Rev C1, Page 5/7 ## **ELECTRICAL CHARACTERISTICS** Operating conditions: VCC = 4...5.5 V, Tj = -40...125 °C, unless otherwise stated | Item
No. | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |-------------|--------------|---|--|-------------|------------|--------------|------------------------| | Total | Device | | 1 | Ш | , ,, | | | | 001 | VCC | Permissible Supply Voltage | | 4 | | 5.5 | V | | 002 | I(VCC) | Supply Current in VCC, dark | E() = 0
Tj = 27 °C | | 1.0 | 2 | mA
mA | | 003 | I(VCC) | Supply Current in VCC | $\lambda_{\text{LED}} = \lambda \text{pk}, \text{ E()} = 0.1 \text{ mW/cm}^2$
Tj = 27 °C | | 1.5 | 4 | mA
mA | | 004 | Vc()hi | Clamp-Voltage hi at all pins | I() = 4 mA | | | 11 | V | | 005 | Vc()lo | Clamp-Voltage lo at all pins | I() = -4 mA | -1.2 | | -0.3 | V | | Photo | sensors | | | | | | | | 101 | E()mxr | Permissible Irradiance | $\lambda_{LED} = \lambda pk$ | | | 0.2 | mW/
cm ² | | 102 | Aph() | Radiant Sensitive Area | 0.8 mm x 0.3 mm per sensor | | 0.24 | | mm ² | | 103 | λ ar | Spectral Application Range | Se(λ ar) = 0.25 x S(λ)max
see Figure 1 | 400 | | 950 | nm | | 104 | λ pk | Peak Sensitivity Wavelength | see Figure 1 | | 680 | | nm | | 105 | $S(\lambda)$ | Spectral Sensitivity | $\lambda_{LED} = \lambda pk$ | | 0.45 | | A/W | | Photo | current Am | plifiers | | | | | ' | | 201 | lph() | Permissible Photocurrent
Operating Range | per sensor | 0 | | 200 | nA | | 202 | η()r | Photo Sensitivity (light-to-voltage conversion ratio) | $\lambda_{LED} = 740nm$ | 60 | | 120 | A/W | | 203 | CR() | Photocurrent Gain | CR() = lout() / lph() | 150 | 200 | 250 | | | 204 | fc()hi | Cut-off Frequency (-3 dB) | | 150 | 200 | | kHz | | 205 | ∆lout()m | Channel Matching | deviation from mean value | -15 | | +15 | % | | 206 | ∆lout()m | Channel Cross Talk | only one photosensor illuminated at the same time | | 0 | | % | | Curre | nt Source (| Dutputs | | | | | | | 301 | Vout() | Permissible Output Voltage (Operating Range) | | 1 | | VCC -
1.5 | V | | 302 | lout() | Permissible Output Current | Vout() = 1 V VCC - 1.5 V
VCC = 4.55.5 V, Vout() = 1 V VCC - 2 V | -50
-200 | | | μA
μA | | 303 | tr(), tf() | Output Current Rise/Fall Time | Iph: $0 \rightarrow 100$ nA, 1T settling (63%);
Vout() = constant
CL = 30 pF, RL() = 10 k Ω | | 0.7
0.8 | | µs
µs | | 304 | lout()0 | Output Dark Current | | -0.6 | | +0.6 | μA | | | | | T. Control of the Con | | | | 1 | Figure 2: Typical directional characteristics ## 8-CHANNEL ACTIVE PHOTOSENSOR ARRAY Rev C1, Page 6/7 ### **APPLICATION CIRCUITS** Figure 3: Optical encoder application example. Here, the sine-to-digital converter iC-NV is employed to output spike-free encoder quadrature signals featuring a minimum transition distance. iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source. iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product. iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product. As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe). We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can ## **iC-LSB** 8-CHANNEL ACTIVE PHOTOSENSOR ARRAY Rev C1, Page 7/7 ### **ORDERING INFORMATION** | Туре | Package | Options | Order Designation | |--------|-----------------------------------|-----------------|------------------------| | iC-LSB | - | | iC-LSB chip | | | 14-pin optoBGA
6.2 mm x 5.2 mm | glass lid | iC-LSB oBGA LS2C | | | 14-pin optoBGA
6.2 mm x 5.2 mm | on-chip reticle | iC-LSB oBGA LS2C-LSBxR | | | | | | For technical support, information about prices and terms of delivery please contact: iC-Haus GmbH Tel.: +49 (61 35) 92 92-0 Am Kuemmerling 18 Fax: +49 (61 35) 92 92-192 D-55294 Bodenheim Web: http://www.ichaus.com GERMANY E-Mail: sales@ichaus.com Appointed local distributors: http://www.ichaus.com/sales_partners