iC-HN3

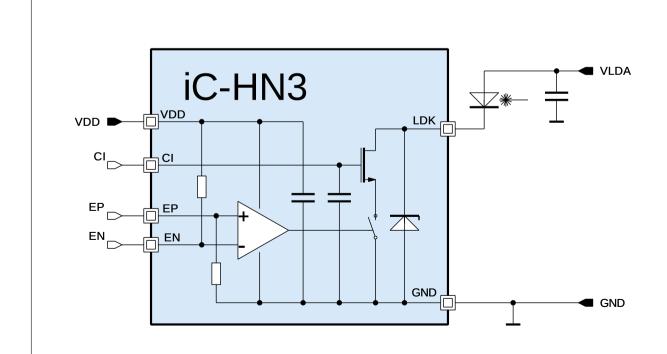
SHORT PULSE 2.8A LASER DRIVER

Rev B1, Page 1/9

FEATURES

- ♦ Pulsed operation with up to 2.8 A
- ♦ Spike-free switching of the laser current
- ♦ Operates as switched, voltage-controlled current sink
- ♦ Up to 30 V laser supply voltage
- ♦ LVDS switching input

APPLICATIONS


- ♦ TOF Range Finders
- ♦ LIDAR
- ♦ 3D scanning
- ♦ Gesture recognition
- ♦ IR security illumination

PACKAGES

DFN8 3 mm x 3 mm x 0.9 mm RoHS compliant

BLOCK DIAGRAM

iC-HN3

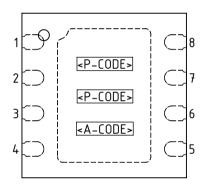
SHORT PULSE 2.8A LASER DRIVER

Rev B1, Page 2/9

DESCRIPTION

Laser Switch iC-HN3 enables the spike-free switching of laser diodes with well-defined current pulses.

Pulse width adjustable down to 2 ns.


The diode current is determined by the voltage at pin

The switch is controlled via LVDS inputs.

The output channel can be operated up to 2800 mA pulsed current depending on the frequency, duty cycle and heat dissipation.

PACKAGING INFORMATION

PIN CONFIGURATION

PIN FUNCTIONS

No. Name Function

1 CI Current control voltage

2 VDD Supply voltage

3 EP Positive LVDS switching input4 EN Negative LVDS switching input

5 GND Ground 6 GND Ground

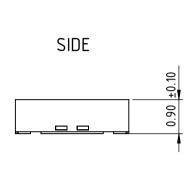
7 LDK Laser diode cathode8 LDK Laser diode cathode

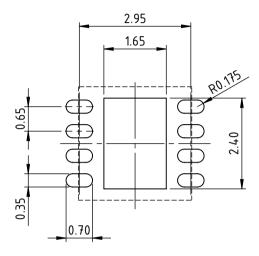
BP Backside Paddle 1)

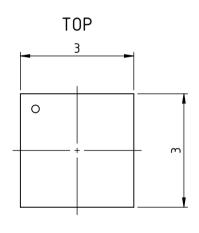
IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes);

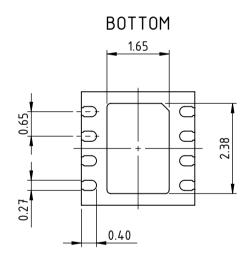
1) The healeride models is to be connected to a Crowned Place (CNP) on the PCP.

¹⁾ The backside paddle is to be connected to a *Ground Plane* (GND) on the PCB.




Rev B1, Page 3/9


PACKAGE DIMENSIONS


All dimensions given in mm.

RECOMMENDED PCB-FOOTPRINT

All dimensions given in mm. Tolerances of form and position according to JEDEC MO-229.

dra_dfn8-3x3-3_pack_1, 10:1

Rev B1, Page 4/9

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	VDD	Voltage at VDD		-0.2	6	V
G002	V(LDK)	Voltage at LDK		-0.2	30.5	V
G003	V()	Voltage at EP, EN, CI		-0.3	6	V
G004	Vd()	ESD Susceptibility at all pins	HBM 100 pF discharged through 1.5 kΩ		2	kV
G005	Tj	Operating Junction Temperature		-40	125	°C
G006	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

Item	Symbol	Parameter	Conditions			Unit	
No.				Min.	Тур.	Max.	
T01	Та	Operating ambient temperature range		-40		105	°C

Rev B1, Page 5/9

ELECTRICAL CHARACTERISTICS

Operating Conditions: VDD = 3.0...5.5 V, Tj = -40...105 °C unless otherwise stated

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device			Ш			
001	VDD	Permissible supply voltage		3		5.5	V
002	I(VDD)	Supply current in VDD	static			7	mA
003	Vc(LDK)hi	Clamp voltage hi at LDK	I() = 100 mA, t < 100 ms I(LDK) = 2 mA	30.5 30.5	35.5	45 43	V V
004	Vc()lo	Clamp voltage lo at LDK, VDD	I() = -10 mA	-1.6		-0.2	V
005	Vc()hi	Clamp voltage hi at CI, EP, EN	I() = 1 mA, t < 100 ms	7	8	9	V
006	Vc()lo	Clamp voltage lo at CI, EP, EN	I() = -1 mA	-1.6		-0.3	V
Laser	switch LDK	, CI				, "	
101	I(LDK)	Permissible pulse current in LDK	Min. Pulse-Pause Ratio 1:10			2.8	Α
102	Vs(LDK)	Saturation voltage at LDK	I(LDK) = 2.52 A, V(CI) = V(CI)@I(LDK) = 2.8 A			2	V
103	I0(LDK)	Leakage current in LDK	V(LDK) < 30 V			200	μA
104	tr()	LDK current rise time	lop(LDK) = 2.8 A, I(LDK): 10% → 90% lop			1	ns
105	tf()	LDK current fall time	lop(LDK) = 2.8 A, I(LDK): 90% → 10% lop			1	ns
106	tp()	Propagation delay V(EP) → I(LDK)	Differential LVDS Rise and Fall Time < 0.5 ns		5		ns
107	V(CI)	Permissible voltage at CI		0		5.5	V
108	Vt(CI)	Threshold voltage at CI	I(LDK) < 20 mA	0.4		1.2	V
109	V(CI)	Operating voltage at CI	I(LDK) = 2.8 A, V(LDK) > 2.3 V			3	V
110	Rpd(CI)	Pull-down resistor at CI		200	500	1250	kΩ
111	C(CI)	Capacitance at CI			2.2		nF
LVDS	Interface Ef	P, EN					
201	Rpd(EP)	Pull-down resistor at EP		80	200	500	kΩ
202	Rpu(EN)	Pull-up resistor at EN		80	200	500	kΩ
203	Vdiff	Differential voltage LVDS	Vdiff = V(EP) - V(EN)	200			mV
204	V()	Input voltage range LVDS		-0.2		VDD + 0.2	V
205	tp()	Pulse width at EP, EN	Differential LVDS Rise and Fall Time < 0.5 ns	2		500	ns
Powe	r On						
301	VON	Power-on voltage VDD	rising voltage			2.9	V
302	VOFF	Power-down voltage VDD	falling voltage	1.2			V
303	Vhys			50		800	mV

Rev B1, Page 6/9

LASER OUTPUT

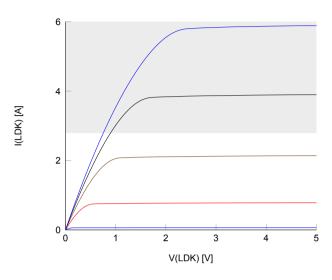


Figure 1: Output characteristics of LDK

Rev B1, Page 7/9

ANALOG CURRENT

The voltage at pin CI sets the current in pin LDK. Figures 2 and 3 show the temperature dependency of the LDK output current versus the voltage at CI for a *typical*

device. Figures 4 and 5 show the min., typ. and max. variations between devices at 27 °C temperature. The voltage at pin LDK is 2.5 V.

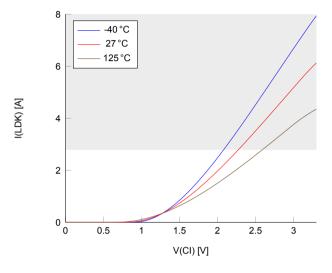


Figure 2: I(LDKx) vs. V(CIx) at VDD = 3.3 V

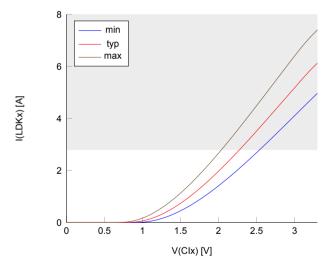


Figure 4: I(LDKx) vs. V(CIx) at VDD = 3.3 V

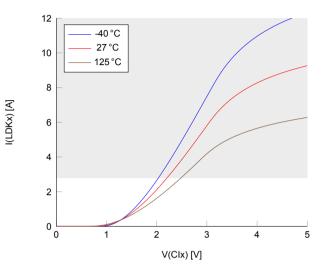
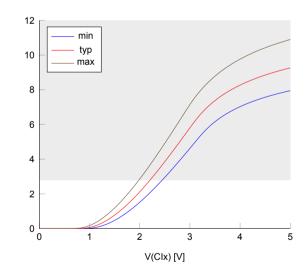



Figure 3: I(LDKx) vs. V(CIx) at VDD = 5 V

I(LDKx) [A]

Figure 5: I(LDKx) vs. V(CIx) at VDD = 5 V

Rev B1, Page 8/9

DESIGN REVIEW: Notes On Chip Functions

HN	Chip release W, Z		
No.	Function, Parameter/Code	Description and Application Hints	
		None at time of printing.	

Table 1: Design review

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
A1	2019-02-20		Initial release	

Rel.	Rel. Date*	Chapter	Modification	Page
B1	2024-02-16	ELECTRICAL CHARACTERISTICS	Item No. 111 updated	5
		LASER OUTPUT	New	6
		ANALOG CURRENT	New	7
		DESIGN REVIEW: Notes On Chip Functions	New	8

iC-Haus expressly reserves the right to change its products, specifications and related supplements (together the Documents). A Datasheet Update Notification (DUN) gives details as to any amendments and additions made to the relevant Documents on our internet website www.ichaus.com/DUN and is automatically generated and shall be sent to registered users by email.

Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data and predicted functionality is intended solely for the purpose of product description and shall represent the usual quality and behaviour of the product. In case the Documents contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the Documents and no liability arises insofar that the Documents were from a third party view obviously not reliable. There shall be no claims based on defects as to quality and behaviour in cases of insignificant deviations from the Documents or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification resp. Documents or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. IC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

environments or in automotive applications unless specifically designated for such use by iC-Haus. iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

^{*} Release Date format: YYYY-MM-DD

Rev B1, Page 9/9

ORDERING INFORMATION

Туре	Package	Order Designation
iC-HN3	8-pin DFN, 3 mm x 3 mm, 0.9 mm thickness RoHS compliant	iC-HN3 DFN8-3x3
	High-speed module for laser diodes	iC-HN3 iCSY HN1M

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

 iC-Haus GmbH
 Tel.: +49 (0) 61 35 - 92 92 - 0

 Am Kuemmerling 18
 Fax: +49 (0) 61 35 - 92 92 - 192

 D-55294 Bodenheim
 Web: https://www.ichaus.com

 GERMANY
 E-Mail: sales@ichaus.com

Appointed local distributors: https://www.ichaus.com/sales_partners